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ESD-TR-81-102
EXECUTIVE SUMMARY

Atmospheric ducts occur when the vertical refractivity profile has a
negative gradient. Such ducts occur frequently in many parts of the world,
and depend on weather conditions. In an atmospheric duct environment,
electromagnetic energy may be propagated with little attenuation relative to
free space over disiances of hundreds of kilometers, thereby greatly
increasing the potential for interference to communications and radar

systems. Also, for a radar system, the coverage can be altered.

The likelihood of experiencing such a field enhancement is greater at
higher radio propagation frequencies. Previously available computer models
for determining ducted fields were limited in the frequencies and duct heights
they were capable of considering. A mathematical model, called DUCT, has thus
been developed to predict electromagnetic field levels in a duct environment
for ducts at any height in the troposphere, and for propagation frequencies

through SHF.

The DUCT model is based on a horizontally homogeneous waveguide-mode
formulation, which was developed utilizing Fourier transform formalism.
Numerical difficulties encountered by previous investigators have been
overcome by the use of a unique mathematical formulation that (a) assures
linear independence, even in a numerical sense, of the homogeneous form of the
governing differential equation; and (b) provides flexibility for judiciously
choosing the particular solution to the inhomogeneous form of this
differential equation. In addition, criteria have been developed for
associating specific types of modal field contributions with particular
portions of the eigenvalue locus for the atmospheric waveguide, thereby

providing the potential for increased computational efficiency.

Predictions of the DUCT model were compared with measurements at beyond-
line-of-sight distances in both surface and elevated duct environments at
frequencies between 65 MHz and 3.3 GHz. It appears to be the first model
capable of predictions that compare favorably (within a few dB) with
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measurements performed ia an elevated duct environment at frequencies as high

as 2201 MHz.

The effects on the fields in a duct environment, as a function of duct M
height, duct size, source height, observer height and propagation frequency,
were ascertained by exercising the DUCT model. Predictions of fields in the .

presence of more than one duct in the atmosphere are also discussed.

The DUCT program is deemed to be a valid model for predicting and

studying beyond-line-of-sight fields in a tropospheric duct environment, and }

it provides prediction capabilities for certain cases that could not be

adequately treated by previously existing models.
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PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department
of Defense facility, established to provide advice and assistance on
electromagnetic compatibility matters to the Secretary of Defense, the Joint
Chiefs, of Staff, the military departments and other DoD components. The
center, located at North Severn, Annapolis, Maryland 21402, is under the
policy control of the Assistant Secretary of Defense for Communication,
Command, Control, and Intelligence and the Chairman, Joint Chiefs of Staff, or
their designees, who jointly provide policy guidance, assign projects, and
estabilsh priorities. ECAC functions under the executive direction of the
Secretary of the Air Force and the management and technical direction of the
Center are provided by military and civil service personnel. The technical
support function is provided through an Air Force-sponsored contract with the

IIT Research Institute (IITRI).

To the extent possible, all abbreviations and symbols used in this report
are taken from American National Standard ANSI (Y10.19 (1969) "Letter Symbols
for Units Used in Science and Technology" issued by the American National

Standards Institute, Inc.
Users of this report are invited to submit comments that would be useful

in revising or adding to this material to the Director, ECAC, North Severn,

Annapolis, Maryland 21402, Attention: XM.
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BACKGROUND

ESD-TR-81-102 Section 1

SECTION 1
INTRODUCTION

Duct Phenomena

It is known that the index of refraction, n, of the troposphere varies
with altitude. In a "standard" atmosphere, n decreases with increasing height
above the ground, approaching unity as the altitude increases. At sea level,
the value of n is generally in the neighborhood of 1.000301. Usually it is
more convenient to use the quantity called "refractivity" than it is to use
the index of refraction. The refractivity, N, is related to n through the

relationship:
N = (n-1) x 106

Therefore, the refractivity of the troposphere is approximately 301 at sea

level and approaches 0 as the altitude increases.

For modeling purposes, it is often more convenient to consider :he earth
as flat and to compensate for earth curvature through an "adjustment" or the
refractivity. This adjustment is accomplished by adding a term to N which,
because of Snell's law, would cause a ray to bend in such a way that its
height above the "flat earth" at each point would be the same as that for a
ray in an "unadjusted" refractivity environment over a curved earth. This new

refractivity is called the "modified refractivity", M, and is given as:

M

#

z
N +—x 10
a
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where

the radius of the earth.

s 1]
[}

N
[}

the height above the ground.

For a standard atmosphere, M increases with increasing height as shown in the

left-hand portion of Figure 1a.

Using a geometrical optics representation (ray tracing), the right-hand
portion of Figure 1a illustrates the manner in which energy would be radiated
from a source (e.g., a transmitting antenna) in a refractivity environment
characterized by the left-hand figure. 1In the illustration, r is the
horizontal distance along the ground. The rays shown are bent in accordance
with Snell's law, which states that a ray traced from a medium of lower
refractivity to a medium of higher refractivity will bend toward the normal to
the interface of the two media. Similarly, a ray traced from a medium of
higher refractivity to a medium of lower refractivity will be bent away from
the normal to the interface. 1In this case, the normal to the "interface" is

in the z-direction, and the rays in Figure 1la are bent accordingly.

Notice that no energy reaches point R, far from the source, because R is
located in the flat-earth representation at a point that would be beyond the

horizon in the curved-earth representation.

The situation depicted above assumed a "standard" atmosphere. Now
consider a case for which part of the M versus z profile changes directions,
such as the situation shown in Figure 1b. Such a situation can be caused by
anomalous weather conditions. In this case, a portion of the rays emanating
from the source will, in accordance with Snell's law, be bent in a manner that
will confine them to remain within a well-defined "layer" of the atmosphere.
This layer is referred to as a "duct". Under certain conditions, waves can
propagate within a duct to great distances (i.e., to beyond-line-of-sight

distances) with little or no attenuation relative to free-space levels.

——.-—--—-——-_——“
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The upper boundary of the duct is the height at which the modified
refractivity gradient (i.e., the ratio of the change in M to the change in 2z)
changes from a negative value to a positive value. This is shown as point A
in Figure 1. The lower boundary of the duct is determined by dropping a
vertical line from point A in the figure. If the vertical line intersects the
profile, the value of z at that point of intersection is the lower boundary of
the duct and the duct is said to be "elevated." For the case shown in Figure
1b, the duct will extend from the height of point B to the height of point
A. If, on the other hand, the modified refractivity profile were such that
the vertical line reached the ground without intersecting the profile curve,

the duct would be called a "surface duct" or a "ground-based duct.”

Energy in a duct may be propagated with little attenuation relative to
free~space over distances of hundreds of kilometers and may subsequently
interfere with existing communications links. In order to predict whether
such interference will take place, information is required about the
characteristics of any ducts that are present and the effects of these ducts
on the propagated fields. Unfortunately, it is nct possible to predict in
advance the occurrence of a duct at a particular time and in a given region.
However, statistical data is available on the occurrence of elevated and
surface ducts in different months and in different regions of the world.1
Reference 1 also contains statistical data related to the characteristics of
these ducts. In general, the percent of occurrence of ducts can vary from O-
60% depending on the region and time of year. Therefore, it would be expected
that meaningful statistical data can be obtained for the propagated field
strengths observed in a duct environment. To accomplish the determination of
field strengths, the statistical duct occurrence data would be integrated with
a "deterministic" model that calculates the field strength when the duct
characteristics are known. The goal of this study was to develop such a

deterministic model.

L Or tenburger, L. N., lawson, S. B. and Miller, G. K., Radiosonde Data

Analysis Summary Maps of Observed Data, GTE Sylvania, Inc., December 1978.

—
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Computational Capabilities

The existence of ducts and their effects on electromagnetic wave
propagation have been recognized for a long time. Documentation of the
computations in this area first appeared at the end of World War II. A review
of the work performed at that time is available in the text edited by Kerr.2
That work, as in most subsequent studies, considers the propagation
environment as a waveguide. The total field strength at the location of a
receiving antenna is then the sum of the field strengths of the modes of the
waveguide. The wavequide is modeled as flat, with earth curvature compensated
by a modified refractivity. Justification for this approximation is discussed

3,4

by Pekeris. The medium is assumed to be laterally homogeneous.

Each waveguide mode corresponds to an "eigenvalue" of the system. In

5,6

many works, these "eigenvalues" are associated with takeoff angles of a ray

relative to the ground -- waveguide modes exist for discrete values of

2 Kerr, D. E., Propagation of Short Radio Waves, MIT Radiation laboratory
Series, Vol. 13, McGraw-Hill Book, New York, NY, 1951.

3 Pekeris, C, L., "Wave Theoretical Interpretation of Propagation of
10-Centimeter and 3-Centimeter Waves in Low-level Ocean Ducts,"
Proc. of the IRE, May 1947, pp. 453-462.

4 Pekeris, C. L.,"Accuracy of the Earth-Flattening Approximation in the
Theory of Microwave Propagation,” Physical Review, Vol. 70,
Nos. 7 and 8, 1t and 15 October 1946, p. 518.

> Pappert, R. A., and Goodhart, C. L., Waveguide Calculations of Signal
Levels in Tropospheric Ducting Environments, TN 3129, Naval Electronics
Laboratory Center, San Diego, CA, 25 February 1976.

6

Budden, K. G., The Wave-Guide Mode Theory of Wave Propagation,
Prentice Hall, Englewood Cliffs, NJ, 1961.
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such angles, which are referred to as "eigenangles". Whether the eigenvalues
are associated with angles or with any other physical parameter, they are
obtained as the roots of a complex equation called a modal equation.
Therefore, a major part of any computation is dedicated to determining these

roots.,

Computations of the lowest order waveguide modes in a duct environment
and the behavior of the corresponding fields were considered by Wait and
Spies.7 Dresp8 developed a usable program that computed field strengths in,
above, and below a duct. He modeled the earth as cylindrical; once a general
solution was obtained, he showed that it can be approximated with the aid of
the modified refractivity as the solution for the flat-earth case. Although
the formulation by Dresp was mathematically elegant, his program was limited
to the determination of 20 waveguide modes. In addition, his results were not

verified by comparison with measured data.

Pappert and Goodhart (see Reference 5) developed a code that was verified
using measured data for a surface duct. Skillman and Wood59 found that the
Pappert and Goodhart program predictions adequately reflected measurements at
frequencies below 450 MHz, taken in an elevated duct environment. However,
they found that the Pappert and Goodhart model failed to provide predictions

for comparison with measurements at 2.2017 GHz.

Wait, J. R., and Spies, K. P., "Internal Guiding of Microwaves by an
Elevated Tropospheric Layer," Radio Science, Vol. No. 4, April 1969,
pp. 319-326.

8 Dresp, M. R., Tropospheric Duct Propagation at VHF, UHF, and SHF, MITRE
Technical Report MTR-3114, Vols. I and II, MITRE Corporation,
Bedford, MA, October 1975.

Skillman, J. L., and Woods, D. R., "Experimental Study of Elevated Ducts,"
Proc. of Conference on Atmospheric Refractivity Effects Assessment,
Technical Document 260, Naval Ocean Systems Center, San Diego, CA,

15 June 1979.
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Inherent limitations can be found in the Pappert and Goodhart model. One
such limitation involves the uncertainty in any calculation that all
significant modes have been found; that is, it is possible in their model to

10 An attempt was made to utilize a more effective search

miss eigenvalues.,
method with their model, but an extensive modification of the mathematical
formulation of the basic model was required, making its implementation

impractical.

Another limitation of the Pappert and Goodhart model is the requirement
that a "reference height" be specified, and the final result is dependent in
some instances on this reference height. Since the specification of the
reference height requires some physical insight into the particular problem
under consideration, the Pappert and Goodhart model may be employed only by
users with such knowledge. In this case, the model is not user-oriented. 1In

addition, no user's guide is available for the Pappert and Goodhart model.

The computational capabilities noted above assumed a laterally

homogeneous model. Cho and WaitT?

performed work in which only piecewise
homogeneity was assumed, and the modes in each homogeneous section were
determined. However, no user-oriented computer code for accomplishing this

has been developed.

A major obstacle in developing any computer program that uses a waveguide
model is the calculation of all significant modes. The number of modes
increases as the frequency and duct height increases. In some cases,

thousands of modes are necessary to adequately describe the fields; this

0 Goodhart, C. L., and Pappert, R. A., Application of a Root Finding Method

for Tropospheric Ducting Produced by Trilinear Refractivity Profiles,
Technical Report 153, Naval Ocean Systems Center, San Diego, Ca,
12 September 1977.

1 Cho, S. H., and Wait , J. R., Analytical Study of Whispering Gallery

Transmission in a Non-Uniform Tropospheric, Interim Report, Cooperative

Institute for Research in Environmental Sciences, University of Colorado,
Boulder, CO, 30 December 1976.
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further complicates the problem of determining all significant modes. In the

hope of overcoming the problem, Cho, et al.12

attempted to utilize a hybrid
approach to the problem in which a waveguide and geometrical optics series may
be nsed to describe the fields. 1In such a case, a single geometrical optics
term may be used to replace a vast number of terms in the waveguide mode
series. They obtained good results for a duct formed by an ideal refractivity
profile. However, this method is not applicable to more general refractivity

profiles.

OBJECTIVE

The objective of this work was to develop a user-oriented deterministic
computer model to compute the fields propagated in a homogeneous duct

environment for all frequencies and ducts of interest.

Documentation was reviewed on existing computational capabilities for
predicting propagated fields in a duct environment. Such capabilities were
found lacking for the frequencies associated with elevated ducts, principally
because of the inability to determine all the waveguide modes required to
describe the fields. After extensive analysis, it was found that this

inability stemmed from the facts that:

1. The mathematical functions, which are solutions to the field
equations in the duct environment, became linearly dependent (in a numerical {

sense) for the most significant values of the argument of these functions; and

12 Cho, S. H., Migliora, C. G. and Felsen, L. B., "Hybrid Ray-Mode Formulation .
of Tropospheric Propagation," Proc. of Conference on Atmospheric H
Refractivity Effects Assessment, Technical Document 260, Naval Ocean 4
Systems Center, San Dieqo, CA, 15 June 1979,
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2. The value of these mathematical functions could be exponentially
large or small, thereby exceeding the capacity of common high-speed

computers.

These problems were overcome by:

1. Expressing the solutions to the field equations as linear
combinations of these functions in a manner that assures linear independence

in a numerical sense; and

2. ‘Utilizing a unique method for computationally expressing

exponentially large or small numbers.

It was decided that a Fourier transform formulation of the problem would
result in a modal equation that was most compatible with an available and
efficient eigenvalue "search" method. This formulation also provided a
flexibility, heretofore unavailable, for obtaining the field solution in a
numerically efficient manner. A computer code was developed based on this

approach.

The adequacy of the mathematical approach and the corresponding computer
model was verified by comparing computed results with those of other codes and
with documented measurements. Once this was successfully accomplished, the
code was used to analyze the eigenvalues and the fields for different duct
configurations, different frequencies, and different heights of the

transmitting and receiving antennas.
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ORGANIZATION OF REPORT

The analytical and numerical basis of a computer program, called DUCT,
which has been used sucessfully in predicting propagated field strengths in a

DUCT environment, is described herein. A synopsis of the individual sections

follows.
Section Contents

2 Mathematical formulation.,

3 Numerical procedures used to
determine the eigenvalues of the |
modal equation.

4 Numerical procedures utilizing
the eigenvalues to determine the
fields.

5 Comparison of predictions of the
DUCT program with measurements.

6 Analysis of eigenvalue results
and relation of specific eigenvalues
to particular field contributions.

7 BAnalysis of results of fields for
different parameters of interest.

Appendix A Review of some characteristics of
the modified Hankel functions of
order one-~third.

Appendix B Basis for an efficient method for

evaluating the modal equation, which
is in the form of a determinant.
Section 5 is independent of Sections 2, 3, and 4 so that the reader who
is interested only in verification aspects may skip directly to Section 5.
Sections 6 and 7 may also stand alone, although Section 3 would be beneficial

for a complete understanding of Section 6.

10
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SECTION 2
MATHEMATICAL FORMULATION

In this section, the problem of electromagnetic propagation in an
atmospheric duct is mathematically formulated. This is accomplished for
horizontally polarized radiation by using a second-order partial differential
equation to describe the variation of a component of the magnetic Hertz
(vector) potential. The solution of this equation is obtained by utilizing

Fourier transform formalism to cast the partial differential equation into the

form of an ordinary differential equation, and by solving the latter equation
in terms of unknown coefficients. These coefficients are determined using the
boundary and radiation conditions of the system. The solution for the BHertz
potential is obtained in the form of an integral that is evaluated with the

aid of complex function theory in terms of a series of waveguide modes.
The above process is generalized to include vertically polarized
radiation. Alternative mathematical formulations are introduced in succeeding

sections that will prove useful in required numerical evaluations.

REFRACTIVITY PROFILE

The index of refraction of a medium is given by:

n{z}) = /urer = /er(Z) (1)

where €, and M, are the relative permittivity and permeability of the
medium. It is assumed that e =1 everywhere. In what follows, n is only a

function of the height z above the ground. The refractivity N is defined as:

N = (n-1) x 106 (2)

1M
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and is numerically a more convenient parameter than n.

It is often mathematically convenient to utilize a rectangular coordinate
system to describe atmospheric wave propagation. In such a formalism, it has
been found that the earth curvature may be accounted for by appropriately
modifying the index of refraction of the atmosphere. This modification is
accomplished by adding a term to n which would cause a ray to bend in such a
way that its height above the "flat earth" at each point would be the same as
if it were a straight ray over a curved earth. The modified index of

refraction, m, is then given by (see Reference 2):

m(z) = n(z) + z/a (3)
where a is the radius of the earth in the same units as z.

The modified refractivity is defined as:

M = (m=-1) x 106 (4)

The modified index of refraction will have a profile (i.e., a variation
with height) such as that shown by the dashed line on the right side of
Figure 2. To make the problem mathematically tractable, this general profile
will be approximated by a piecewise linear profile with L sections, such as
that shown by the solid lines on the right side of Figure 2. In the figure,
L = 3 has been used. Each section will represent an atmospheric layer, or

region, the boundaries of which are parallel to a flat earth located at z = O.

The interface between the ith and ith+1 layer (1 S.i < L-1) is located

atz=zi,

Figure 2, for the case L = 3. Each layer is assumed to be horizontally

with the layer i = 1 closest to the ground. This is illustrated in

homogeneous, with a modified index of refraction given by:

z -Hi
l m,(z) tan a. + 1, (5)
1 2 1

Mi(z)x10_6+1,1iiiL
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where Hi is the value of z at which my (z) would equal unity, and the slope

tan ai/2 is assumed small:
| tan o | << (6)

From Equations 5 and 6,

m,{(z) = 1 + (z—Hi) tan @ 1 ¢1i <L (7)

14

"

-6
1 + 2 Mi(z) x 10

The modified index mi(z) is assumed to be continuous across the interfaces

between the layers (see Figure 2):

mi(zi) = mi+1(zi) » 1 <1 <L (8)

MAGNETIC HERTZ POTENTIAL

It can be assumed that horizontally polarized wave propagation is due to
. -
a radiating magnetic dipole p = p 2 oriented in the z-direction and located

at x = y=0, 2 = 2, (see Figure 2). In a laterally homogeneous medium, the

T
wave propagation due to such a dipole exhibits axial symmetry (about a
vertical axis through the radiating dipole), and may be obtained from the

>
z-component HZ of the magnetic Hertz potential vector II . Thus:

> ~ 9
II (XIYIZ) = HZ (xIle) 4 (9)
E = -jou V x 1
= —jwuo x
and
H=Vx9vxi an
14
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where w = 2nf

f

the propagation frequency,

Mo

the permeability in vacuum,
and an ejwt time dependence is assumed.

DIFFERENTIAL EQUATION

In each atmospheric layer, Hz satisfies the partial differential

equation:

720 4k 2m2(z) M, = -p 8(x)8(y)8(z =23, 1 < i <L (12)
1 o 1 1 T - —_

where

[, = the value of ﬂz in the ith layer

. 2 2
ko = the free-space wave number determined by ko =w U eo
p = the magnetic dipole strength
§ = the Dirac delta function.
The Laplacian operator Vz is defined as:
g2 30, 3% 9%
ax?  ay® 322
In the ground, I, satisfies the equation:
V2H + k 2n 2 I =0,2¢<0 (13)
g9 o g g -

15

o e e — ke o = s

i
!
1
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where

Hg is the value of Hz in the ground and

ng is the constant refractive index of the ground.

This is given by:

where eg and °g are the ground values for the permittivity and conductivity,

respectively.

A solution is sought to BEjuation 13 in the ground and to Bjuation 12 in

each atmospheric layer, subject to the boundary conditions at the ground and

> >
at each layer interface that the tangential components of E and H are
continuous across the boundary. Using Bgquations 7, 10 and 11, it may be
shown13 that these conditions may be written:
I = I
1 1+ 1 1
on z =2 1<1<L- ‘ :
L, M, 1, {(14) ;
1 1+ 1 EF
9z 3z |
Hg = Hi
- (15)
ol am, pom 2=0
—9g_ _t
oz 3z
13

Tyras, G., Radiation and Propagation of Electromagnetic Waves, Academic
Press, New York, NY, 1969.

16
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An additional requirement on the solutions obtained is that the radiation
conditions be satisfied. That is, I _ must represent an outgoing wave as

9
2+ - @ , and Hi must represent an outgoing wave as z* + * ,

FOURIER TRANSFORM FORMULATION
The partial differential Bjuations 12 and 13 may be reformulated as

ordinary differential equations with the aid of Fourier transform theory (see

Reference 13). The double Fourier transform of II (x,y,2) is defined as:

~ © -jux ® -jvy
I (u,v,2) = f dx e dy e I (x,v,2) (16)
-

with the inverse transform given by:

L i jux = jvy ~
T (x,y,2) = - J du e [ av e I (u,v,z) (17)

2 - —00

(21)

Taking the double Fourier transform of Bguations 12 through 15 yields:

2 2

9—3- + k2° [miz(z) - i 2] ﬁi =-p G(Z—ZT) » 1 €1 <L
dz o (18)
2 2
4 5 + kOZ(n 2_ P 2) ’I‘.[' =0 (19)
dz g k 9
o
nl = Hi + 1
zZ = Z, 1 < i ¢ L=-1 (20)
~ ~ l 4 - -
dall. daln,
i i+ 1
dz  dz

17
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Hg = II1
z =0 (21)
atf an
9. 1
dz dz
where
2 . 2 2
P = U + Vv

Thus solutions are sought for ﬁi and ﬁg in Bguations 18 and 19, subject
to the boundary conditions in Equations 20 and 21 and to the radiation
conditions. Once these solutions are found, they may be used in Bjuation 17
to find the Hertz potential in each medium which, in turn, may be used in

Equations 10 and 11 to find the electromagnetic field vectors.

SOLUTION OF EQUATIONS

In Ground
The solution to Hjuation 19 is:

T =a &2 (22)

where

2 2 2
Yy = ko //;g ~{p /ko ) (23)

and Ag is a function of the parameter p. ﬁg satisfies the radiation condition
for large negative values of 2z, since it represents an outgoing wave in this

region. To assure that ﬁg + 0 as z + =, the branch of y is chosen so that:

18
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Im Y < O. (24)

In Atmosphere

The complete solution to Byuation 18 will be given by the sum of the
general solution of the homogeneous equation and a particular solution of the

inhomogeneous equation. The homogeneous form of Bjuation 18 may be written:

32 ~

A 2+qi Hi=0 (25)
9

where
k 3
(z) = 2 ?/ m 2(z) - Qi_ (26)
qi tan ai i K 2
o

and Equation 7 was used. Equation 25 is known as the Stokes Equation and its
solutions are given in terms of Airy functions or in terms of modified Hankel
functions of order 1/3. For purposes at hand, it is more convenient to

utilize the latter.

Thus :
ni = Ai h1(qi) + Bihz(qi) » 1 <i<L (27)
where
2 /2 ' ) [ 2 37
h1 (q) = s»q H1/3 3 q (28)
19
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(2) 3/2

(29)

jasd
Wity
Q

2
hy @ =134 1/3

are the modified Hankel functions of order 1/3 of the first and second kind,

14 (1)

respectively, and are tabulated in the literature. H1/3 and H1/3(2) are

Hankel functions of order 1/3 of the first and second kind, respectively.

The A; and B; in Equation 27 are not functions of z, but depend on the
parameters p and v. Their values are determined from the boundary
conditions. 1In order to satisfy the radiation condition for large z in the

Lth medium:

A =20 (30)

The solution (Equation 27 with Bguation 30) for the homogeneous form of ]
Equation 18 represents the entire solution for every layer except the one in
which the transmitting dipole is located. That is, only for the layer

containing z = 2z, is Equation 18 inhomogeneous. Assuming this to be the Pth

T
layer, a particular solution of the inhomogeneous equation in this layer is:

h1[ qp(z) ] h2 ( 9, (zT) ], z <« z,,

i = —2*7‘ . (31)
P h2[ qp(z) | h1 { 9 (zT) 1, 2> z,,

where W is the constant Wronskian for h1 and h2 given by:

Y4yarvard Computational Laboratory, Tables of Modified Kankel Functions of

Order One-Third and of Their Derivatives, Harvard University Press,
Cambridge, MA, 1945.

20
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1/3
) (32)

- -

- - _ __ 4 ¢
W=W (h1‘h2) = hl(q) h2 (q) hz(q) h1 (q) = =

Njw

and the primes indicate the derivative with respect to the argument of the

function. Thus:

- ahm(q)

hm (@) =—F—— , m

3 1,2 (33)

and

aqp ko 2/3

qp (z) = 5z = m tan a, (34)

where Bquations 26 and 7 were used. That Byuation 31 is a solution may be

verified by substituting it into Equation 18, integrating each term from

~

Zp - € to zp + € and letting € *> 0. Since HP is assumed finite at z = Zq,

this yields:

dﬁp e L (35)
dz \ Zo e B P
which produces an identity when Byuation 31 is used,
Equation 31 may be written more conveniently as:
o = Ry by (@p) by (qp) (36)

21
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where
9p¢ = 9p {min (z,zT)]
b, = 9 (max (z,zT)]
and
R, = P__
Wq b

It will be noticed thaf, when P = L and z becomes large, the dependence of

~

HP on z is through hz[q(z)]. Therefore, the solution of ﬁp given in
’

Equation 36, represents an outgoing wave as z + @, and therefore is

consistent with the radiation condition.

Combining the general solution (Equation 27) of the homogeneous equation

with a particular solution (Equation 36) of the inhomogeneous equation yields:

I = Aih1(qi) + Bi hz(qi) + Rih1(qi<) hz(qi>) S,

i lP’1£i-S-L (37)

which, along with Bjuation 30, is the complete solution of Bjyuation 18 in each

layer. 6iP is the Kroneker delta function defined as:

22
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DETERMINATION OF COEFFICIENTS

Section 2

The coefficients Ag

obtained from the boundary conditions.

notation 9 4 is used to indicate the value of q; on the boundary at z

with 2, denoting ground level. Thus:

in Bguation 22 and A, B

1

qij = qi(zj)
Also, let
A = (2

In the equations which follow,

in Buation 37 must now be

the

Zj,

(38a)

(38b)

Substituting Bguations 22 and 37 in each of Hjuations 21 yields:

A

= A

h

(q

)

g = M hyayg) + By b,y ) + R,

and

-

>

= q 2

NS NCRY

ivA
] 9
from which Ag may be eliminated,

- _ y B .
A1[h1 (q10) G h1\q10)] + 1[h2 (q

-h2(q1T) R161p[ h1 {(q

where

23

a
i

1

0

0

h1 (q,.)

)

)

10 2 1T

resulting in:

-G h2(q1o)]

-G h1(q10)]

S

1P

9o 7 * % B (350 8 (9p ) Qp |
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G = 1L (40)
1

Substituting Fguation 37 in each of Pquations 20 yields:

Ah(q ) + Bihola;) + Riho(a; ) hytay ) 85
= AL G, 0 Y B Moy, 4! !
+ R Gholag ) oty g n) S5y p

and

AR, T(qy;) + By by ) R hy(qy) hy (a0 80

= 0 Pia " 1 W@igr,i) T B D 23540,5)

+ R. h” (g

6
1er (54,10 D@ )

i+1,T i+1,P

These equations may L@ recast into the more convenient form:

B ) - A -8 . _ tilq ..
Aih1(qii) M ihZ(qli) i+t h1(qi+1,i) i+ 2(q1+1,1)
=R, gy ) o0 a L 0 S -
t41a) i
- Rih(a; ) holag) 8y l
24
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A b (q.) + B h (@) =B R EAIRNY )
TRIRRNEEY i Mo 1944 i+1 T qsr,i
a.
141
T
+ B 141 qi‘ 2 (q1+1,1)
i+1 .
= Rin > h g, ) hz(qi+1,T) 6iv1,p

- R.N n’
LHCHRE AL IR AR R T

Equations 41, 39 and 30 represent 2L equations in the 2L

B, 1< i < L.

aAs an jillustration of the system of equations which
obtain the unknown coefficients, Equations 30, 39 and 41
following form, assuming L = 3 and P = 1:
A b, (dyq) * B h, (40!
h - a_h - h
A b e ) B 2499 oPy () By, (a5

A1h1(q11) + Bnh (q1‘) - Azth1(q,1) -

172 quahz(qzx)

+

A2h1(q22) Bzhz(qzz)

+

n’ . -B
anilay,) B,h(d,,) P

where
dp = qz/q‘ » g = q3/q2

and

25

aghyldy,) = 0

section 2

(41b)

unknowns Ai,

must be solved to

are written in the

= 'R1h2(q1w)h1(qwo)
= -R1h1(q1T)h2(q11)

= 'Rwhx(qu)hz(qxw)

- Bth(q32) =0

{42)
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hm(q10) z hm (q10) -G hm(q1o) , m = 1,2 {42a)

If P were not equal to 1, then the system of equations would be the same as

that shown in Equation 42 except for the right hand side of the equations.

This will be discussed further in Section 4.

It is seen that this system of equations may be expressed in matrix forms as:

a g =8 (43)
where
‘.‘ () hy(dyg) 0 0 0
, hylqy) holagy) - hylayy) - hylqy,) 0
o= ohTlag) Ry s g Tlayy) - dpThy (g 0
| 0 0 hy {(ay;) hylay,) ~ hylay,)
{ 0 0 hy”(dpp) ho"(dp) = dp” hpilayy)
(44)
o
Y
| B,
£ = A, (45)
By
By |
and
~ h_( ) g { ) i
PARSL UNRERERT,
£ = hyld) Rylagy)
B =Ry mhylagy) i) (46)
: |
R 0 J

26
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The solution for any one of the unknown coefficients may be obtained through

the use of determinants. Thus:

7, | 2, |

where, for 1 < i < L-1, T is the matrix obtained by replacing the column of

Ai
a in Bquation 44 containing the coefficients of Pﬁ_ (in Bguation 42) by the
vector B; and for i = L, |TAi{ z 0. TBi' 1 <1 <L, is the matrix obtained by

replacing the column of a containing the coefficients of B.l by the vector R.

Thus, for example:

F hila,g) hyla,g) = Rih (A p0h,(q,,) 0 0
hi(ayy) hyla ) - R (adhola ) - hyla,,) 0
Ta2= hila, ) holay,) - Rib(a,0ho(q, ) - aghyiay,) 0
t -
1 0 0 0 h2(q22) hz(q32)
|
I - -~ 4
L 0 0 0 h2(q22) - thz(q32) ]

The notation |T| indicates the determinant of the matrix T.

SOLUTIONS IN INTEGRAL FORM

Using Bjuation 47 in Bjyuation 38 yields:

IT..] h.(q.) + |T_.] h. (q.)
~ ~ Al 171 Bi 2 71
Hi(u.v.z) = Hi(p,z) = TaT + R1h1(qi<)h2(qi>)6.

1P

1<i<L (48)

27
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which may be used in Equation 17 to obtain:

1 ® jux  » jvy ~
f du e f dv e I (p,z) (49)
-0 . .} l

I (x,y,2) =
i 2
(2m)

~

Since u and v enter Hi as p, BEyuation 49 may be written (References 2

and 13):

-~

1 o ~ 1 (2) ~
T(,z) =— [ pdp J (pp)I =— | pdp H (rx) T (p,2z) (50)
i 2n 0 0 i 4n é 0 i

where C is the contour in the complex p-plane shown as the solid line in

Figure 3.

As discussed in Reference 2, Bjuation 50 is valid only when there are no
singularities of ﬁi(p,z) in the first quadrant of the complex p-plane, and

when:

1 ~
[, e ae Ho( Y (or) i (p,2) > 0, L (51)
C

where C* is the quarter-circle contour of infinite radius lying in the first

quadrant of the p-plane. Both these conditions may be shown to hold.

28
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BRANCH CUT OF
HO(Z) (rp)
#fl II Il Il ll Il Il ILII Re (,)
} o °® i
C [
o’ * POLES OF T |
3 [
- /
[« \B /
i\
\ \/
\
/
/
T
//
— — -
Figure 3. Contour for integral of Equation 50.
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SOLUTIONS IN TERMS OF WAVEGUIDE MODES

By closing the contour C of the integral in BEquation 50, the residue

theorem of complex variables may be used:

2m3 (2)

L (r,z) = - 24 5 pes +——( [ (or) T (0,2) (52)
1 c 1

4T n n an

+ [ ) pdp H
B 0

(2)

where the factor g Res_ is the sum of the residues of p Ho (pr);ﬁi(p,z) at

n
the poles of E(pi,z); the contour C~ (see Figure 3) is the quarter circle of
infinite radius lying in the fourth quadrant; and the contour B encloses the
branch cut which is present as a result of the radical in the expression for Yy
in Bguation 23, No other branch cuts are present within the contour of
integration shown in Figure 3 since the only branch points of the functions

h, (q) and h2 (q) are at infinity (see Reference 14). The integral will

1
vanish over contour C~ in Equation 52 as in Equation 51. The integral over

contour B represents the surface wave contribution to the total field, and is
assumed to be small relative to the other field contributions. Therefore, it

will be ignored as well. Huation 52, therefore, becomes:

I.(r,z) = -2 L Res (53)
i 2 n n

where the residues correspond to waveguide modes15'

An expression for the residues in Bjuation 53 will now be derived. Since

the function H (2) (pr) has no poles in the complex p-plane, the only poles of

the integrand p Ho(2)(pr) ﬁi(p,z) will be those of ﬁi(p,z). But

since hi[q(p)] and hz[q(p)] have no poles in the p-plane, it is seen from

15Wait, J.R., Electromagnetic Waves in Stratified Media, Pergamon Press,
New York, NY, 1962.
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Equation 48 that the only poles of ﬁi will be those for which |a| = 0.

Therefore,

o _ o Ho(z)(pr) (11, | hytag) + 175 by0ap))
Resan H (pr) Hi(p,z)) = Res Tal

0

or from the well-kKnown techniques16 for evaluating residues:

[‘TAil hofa;) + Tgl Bylay) o= o

_ (2) n
Res = P, H, (pnr) 5]al (54)
ap _
P —Pn
where Pn is the nth value of p for which Ial = 0.
(2)

For all cases of interest, |pnr| >> 1, so that Ho (pnr) may be

approximated asymptotically as:

—
-jp_r

(2) . _im/4 ///2 n
HO (pnr) = e —-—npnr e (55)

Using Equations 54 and 55, Equation 53 may be written:

AN / Pn -jo x
B(r.2) = -3 /e 5 73Tal [ITAi] h(a) + Ty ] hz(qi)] e 30

16Churchill, R.V., Introduction to Complex Variables and Applications,
p. 122, McGraw Hill Book Co., New York, NY, 1948.
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where
/o
n

A= (57)
n 3|al

dp
P =0
n
is referred to as an excitation function, and:

E =

=B e zzy = [Tl n @) s (T hz(qi)] (58)

p = On

may be referred to as a height~gain function. The functional‘dependence on 2z

occurs through h1(qi) and hz(qi) (see HEquation 26). The parameter zq enters

through lTAiI and lTBi

ELECTRIC FIELD RELATIVE TO FREE-SPACE

>
Although the value of E may be obtained from Bguation 56 by using
Equation 10, it is often more convenient to determine the magnitude of the

electric field relative to free-space:

>
E
A =— (59)
BN
>
where IEfs' is the magnitude of the field that would be obtained at the same
receiving location and using the same source, but with the propagation taking
place in empty space (i.e. in a vacuum). The value of A will now be shown to

be proportional to Hi for the problem under consideration.

32
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In free-space, the z-component of the magnetic Hertz potential is given

by:

Section 2

(60)

where Bjuation 37 was used and q; is obtained from Bjuation 34 using the

parameters of the actual environment (i.e., not the free-space environment).

When the Hertz potential vector is given by Equation 9, Equation 10 may

be used to obtain:

in cylindrical coordinates. Using Bguation 60 in Bguation 61 yields:

. =jk.r
1)
kowu RP qP e 0

Bogs ~ an T

where higher order terms in l/r were neglected.

Equation 61 results in:

33
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- -jp_r ~jk . wu jp_r
Eel = wu/ e]"/4 X annEne s 0 7 eJ"/4 E AnEne n (63)
(2mr)’2 (2mr)’2
where it was assumed that: -
C = ko (64)

for all pn of interest. In Section 3, the approximation given in Bjuation 64

is shown to be valid for the work described herein. By comparing Bjuations 56

and 63, it is seen that:

E_=kwuH.
1

9i 0 (65)
Defining:
/. '/
2 2 1
By = 2L, 2E2M0 T (gnr) 2 (66)
p V9 p
and using Bguations 62 and 65 in Bguation 59 yields:
4nr |11 -jp_r
A=———|—],'|=B |EAEernl (67a)
RP W qP 0 'n nn
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where Equation 56 was used. A dipole strength of unity was assumed in

FEquation 66.

In Hguation 67a, IIi represents a sum of complex numbers taking full
account of the phase of each term. That representation will be referred to as
a "coherent sum", a "mode sum", or a "vector sum." It is also useful to
define the relative field that would be obtained if the phase of each term
were completely random instead of well-defined. This will be denoted as A,

where:

- -jpnr 2
A=8 VI |xEe | (67b)
o] n nn

which is similar to the result that would be obtained if the power
contribution of each mode were added, rather than the field contribution.
Therefore, the representation used in Bquation 67a will be referred to as the

"power sum" or "incoherent sum."

In terms of dB relative to free-space, A and A are written as:

AdB = 20 loq}OA (67c)
and
AdB = 20 log1oA (67d)

In most works on this subject (e.g., References 2, 5, and 8), the

function En defined in Bquation 58 is written in the form:
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En = u(pn,Z) u(pn,zT)

used by Dresp 17

formulation of this problem.

which demonstrates the reciprocity between the transmitter and receiver.
Using Zquation 68 in Equation 66 would result in precisely the formulation
(see also Reference 8). Although it is elegant in its

representation, the form of Equation 58 is more desirable for the numerical

VERTICALLY POLARIZED PROPAGATION

Section 2

(68)

As shown in Reference 2,

definitions in Equations 10 and 11 for the electromagnetic field vectors, are
consistent with Maxwell's equations when Byuation 1 holds (i.e., when the
variation in refractive index occurs only through a variation of € but not of

ur). For vertically polarized propagation, on the other hand, an electric

the magnetic Hertz potential, and the

Hertz potential ﬁ(e) must be used, from which the field vectors are obtained
through:
> :
H=jew VxII (e) (69) |
[
and
> >
E=vxvxl(® (70)
17Dresp, M.R., Tropospheric Duct Propagation at VHF, UHF and SHF, MITRE
Technical Report MTR-3114, Vols. I and II, MITRE Corporation,
Bedford, MA, Cctober 1975.
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As shown in Reference 2, these definitions are only approximately consistent
with Maxwell's equations. The approximation, however, is considered to be a
good one for the duct problems of interest.

The mathematical formulation using the electric Hertz potential ﬁ(e)
is identical to the formulation using the magnetic Hertz potential, with the

following exceptions:

1. The magnetic dipole strength p in Bguation 12 should be replaced by:

_.p(e)
p*—Jz———— (71)
weon (ZT)

(e)

where p is the strength of an electric dipole oriented with its axis in the

z direction. This will also affect the wvalue of RP in Bquation 37.

2. The first of Pjuations 15 should be changed to:

2
n 1 =n (0} H1 on z =0 (72)
3. The first of Hgyuations 2! should be changed to:
2
=n {0) II1 on 2 = 0 (73)

4. Muation 40 should be changed to:

37
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. n12(0)
G = (74)
2
1 n
9

Of those listed above, Bjuation 74 is the only change that in practice
will affect the calculations. This may be concluded from the fact that 8
(Equation 67) is proportional to 1/RP, and En (Equation 58) is proportional to

Rp (through the dependence of and ]TBil on RP). Since the final

T .
I, |
result is dependent on the product BOEn the value of RP is therefore of no

consequence. Also, Equations 72 and 73 are manifested in EBEquation 74.

ALTERNATIVE REPRESENTATION

General Solution of Homogeneous Bjuation

The general solution to Bjyuation 25 may be given in terms of Airy
functions, or in terms of modified Hankel functions, which are linear
combinations of Airy functions. The general solution to Bjyuation 25 could
similarly be written in terms of linear combinations of the modified Hankel

functions. This will be very useful in later sections. Thus:

I, = Ai K1(qi) + B,l K2(qi) (75)

would be a valid general solution of Bjuation 25, where:

Kl(qi) C11ih1(qi) + c12ih2(qi) (76)

Kz(qi) = h1(qi) + C221h2(qi) (77)

€214

38




— —

ESD-TR-81-102 Section 2

The subscript i is placed on the constants cmr to indicate that there is no

need for these constants to be identical in each layer. The Cnni would have

to be such as to make the K,(q;) linearly independent.

It is convenient to set:

€394 = 0, Chpy = 1 for i = L (78)
so that HL in Bguation 75 would satisfy the radiation condition when Rjuation X
30 holds. It is also convenient to define:
Syp = W €121 = °
(79)
_ 413 /3 _
c211 = -e ' c22i =1, 1 <L
and
_ _ -4nj /3 ;
S = T Cion T "° (80) i
|
Substituting Bguations 78 through 80 into Bguations 76 and 77 yields: {
|
i
K =
1(qi) h1(qi)
(81)
4n3/3 .
= Voo
‘ Kz(qi) = hz(qi’ e h1(qi), i <L
and
_ -473/3
K1(qi) = h1(qi) e hz(qi)
Kz(qi) = hz(qi)' i=1L (82)
39
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As shown in APPENDIX A, these definitions have the effect of assuring that the
modulus of the two solutions K1(qi) and K2(qi) are not both exponentially

large for any value for which Im(qi) > 0.

Using Equations 81 and 82 in Bquation 32, it may be seen that the
Wronskian for K1 and K2 (as defined above) is identical to the Wronskian for

h1 and h2:

. 1/3
- -4 3
23

Particular Solution of Inhomogeneous Equation

A particular solution of Equation 18 was given in Equation 34. By
substitution in Bjuation 33, it may be seen that both of the following .

particular solutions are also valid:

.
Rp K1(qp<) Kz(qp>) (84)

L —Rp K1(qp>) Kz(qp<) (85)

where K, and K2 are given by BEjuations 81 and 82. However, notice that

Equation 85 will not satisfy the radiation condition when P = L.

Mode Series Solution

Using the Ki-representation rather than the hi-representation, all terms
in the mode series solution remain the same as those derived above, except hi

is replaced by K . Thus, from Hquation 58:
40
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E = lTAi[ K (q;) + |TB_1| K, (q;) i (86)

The substitution of Ki for hi would also take place in the expressions

for T T . and a in Bguations 44 and 47.

ai’ "Bi

41/42




ESD-TR-81-102 Section 3

SECTION 3

DETERMINATION OF THE EIGENVALUES
GENERAL

The major computational effort required to obtain the solution given in
Equation 66 is determined by the eigenvalues p = pn which are the zeroes of

the determinant of a (see BEquation 44). That is, the equation:

Gylo ) = Ia(pn)| =0 (87)

must be solved for the pn. The variable p enters the matrix a in BEguation 44

through the arguments q; of h1 and h2, where:

3

ko 2/3 92
qij = qi(zj) = TEEE—ZIT' 1=~ ;—5 + (zj—Hi) tan ai (88)
0

and where Equations 7 and 26 were used. zj is the height of the interface i
between the jth and jth+l atmospheric layer, with zo 2 0 representing the

ground level.

CHANGE OF VARIABLES I

Instead of searching for solutions of BEjuation 87 in p-space, the search |
may be carried out for any convenient function of p. In the waveguide mode 1

literature, the variable:

L&

g
o = sin RN R (89)

2
k
0
is often used (see Reference 5), where O is interpreted as a plane wave angle
of incidence with respect to the horizontal at a given reference height.

Dresp (see Reference 8) searches for eigenmodes using the variable:

43
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2 (90)

For numerical and analytical reasons which will become clear later, it is
more convenient to search for the roots of BEgquation 87 in "q1o—space“. That

is, it is more convenient to write Byuation 87 as:

) = |a Lq1(n)) | =0 (91)

GT(q 0

10

where, from Equation 88:

ko 2/3 p2
q10= W 1"}:‘3-“1 tan Q.1 (92)
0
Thus
2 q
[} 10
1- = t
; 3 - 373 + H1 an a, (93)
0 0
tan a1
and

=k //[1-H tan a, - 2o (94)
P =% 1 1 2/3

%o

tan
%y

44
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Using Equation 93 in Equation 88 yields:

qij =4, ti + Sij' 1<ikL, j = i-1, i (95)
where
t. = (ltan a_|/|tan a.l)2/3 > 0 (96)
- 1 1 1
and
s.. = (k./|tan a |)2/3 (H, tan a_ - H, tan a, + z, tan a,) (97)
1j 0 i 1 1 i i 3 i

The ti and sij are all real constants.

It should be noted from BEquation 34 that:
. _ 2/3
a (z) = (x/|tan a |) tan a, (98)

is not a function of p (and therefore not a function of q10).

The roots of Pr of interest were shown to lie in the fourth quadrant of

the complex p-plane. By straightforward conformal mapping using Bguation 92,

the corresponding roots q(?é will lie in the upper half of the complex

q10-p1ane.
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The relationship between the a; and d,o may be obtained from Equation

3
95. Figure 4 illustrates this relationship for two arbitrary values of

d9,q using a refractivity profile of the form shown in Figure 5. Figure 6
illustrates the relationship using the refractivity profile of the form shown

in Figure 7.

NUMERICAL INSTABILITIES IN hi REPRESENTATION

It was shown in the previous section that the matrix elements in Equation
44 may contain the functions h1 and h2' or alternatively, may contain

functions that are linear sums of h1 and h. (such as the functions K, and K

2 1
in BHquations 76 and 77). It can also be shown that use of the h1 and h2

2

functions result in numerical instabilities of the determinant |a| when

49,9 1s near the negative real axis and has a large magnitude. Section 6 shows
that the roots in this region of the complex q10-plane contribute most to
fields within the duct. Therefore, numerical instabilities in this region

cannot be tolerated.

From the asymptotic expansions of hT(q) and hz(q) for large |q|, given in
Reference 14 and APPENDIX A:

4my/3 I arg(q) < = (99)

hyla) =e 2

h1(q) + F(q),

For Iq[ large and 2m/3 < arg(q) < m, h1(q) is exponentially large while F(q)

is exponentially small. Thus:

4"3/3h1(q), 21 < arg(q) <7, |q] > (100)

hyla) = e 3

If Bquation 100 were to hold, say, for q = 949 and q = 44, (which would be the

worst case in branch B of Figure 4), and if Equation 100 were substituted into
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Im(q)
Q;o jll d0 Sy 9
\ #332 N 512 q32
\ q22 }' 022
o - } d 4 ?q2|
- \°~\ 322 ——{
] ._]
\\QS E——— Sai
8 U A

Figure 4.
profile of

Re (q)

Figure 5.

Figure 5.

Refractivity profile producing elevated duct.
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Figure 6.

Im(q)

o

2!

Re (q)

Relationship between q,. and qu in complex g-space for refractivity
profile of Figure 7. J

Figure 7. Refractivity profile producing surface duct.
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Equation 44, then the first two columns of the matrix a would be linearly
dependent. That is, each term in the second column would be equal to the
corresponding term in the first column multiplied by the constant

413 /3

factor e This is sufficient to make a singular, so that:

la(qw)l = 0, all q,

thereby making it impossible to locate discrete roots of Bgyuation 91. Of
course, the matrix a is not singular in an analytical sense since the term
F(q), albeit small, makes Bjuation 100 only an épproximation. Nevertheless,
the matrix a would be singular in a "numerical" sense, and would preclude the r

. . . . (n)
use of numerical techniques to obtain the discrete roots q1o .

Pappert and Goodhart (see Reference 5) utilized a formulation employing
the functions h1(q) and hz(q). They avoided the numerical instabilities
described above by a "switching" procedure: They argued that, for values of g
for which Hjuation 100 holds, the fields are evanescent. Since the general

solution of Equation 25 was shown to be given by Bquation 27:

Hi = Ai h1(qi) + Bi hz(qi), 1€ 1< L,

an evanescent solution may be obtained from Bguation 101 by letting:

A = - Bie4ﬂj/3

so that

4n3/3

=1
1}

Bi hz(qi) -e h1(qi)

which, from Ejuation 99, may be written:
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Hi = Bi F(qi) (103)

As stated above, in the region of the g-plane in which Bjquation 100 holds,

F(q) is exponentially small and therefore is an evanescent field.

As described by Pappert and Goodhart (see Reference 10), the "solution-
switching" between Equation 101 and Equation 102 causes a discontinuity in the
function of which the roots are sought [G(q10) in the case at hand}. In turn,

this could lead to missing or duplicating a root already found.

CHOICE OF ALTERNATIVE REPRESENTATION

The discussion above indicates the desirability of a solution in terms of

functions that

1« will not be exponentially large simultaneously in the root-search

region; and

2. will reduce without "switching" to the form of Bguation 103 when

BEquation 100 is wvalid.
Functions that satisfy these conditions are the pair h1(q) and F(q), where
F(q) is defined from Equation 99. Thus:

ﬂi = Ai hi(qi) + Bi F(qi) (104)
The validity of using functions other than h, and h2 was discussed in
Section 2.

In a region where the field is evanescent, Ai would be expected to

approach 0, thus leaving an equation in the form of Bquation 103. That F(qi)

50
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is exponentially small when |q| is large and T < arg(q) < w/2 was noted
following BEquation 99, so that in this subregion of the q1o-plane, h1(q) and
F(q) are not both exponentially large. h1(q) is never exponentially large in
the remainder of the upper half of the q,g9-Plane as shown in APPENDIX A. Thus
Equation 104 is well suited for numerical determination of the roots of
Equation 91. It has the disadvantage, however, of not satisfying the
radiation condition. Since the radiation condition need only be satisfied for

the solution in the uppermost region (i = L), the form:

L, = By hylay) (105)

will again be used in this region.

The functions used in the solutions given in Bguations 104 and 105 are
identical to the functions K1(qi) and K2(qi), as defined in BEquations 81 and

82. Therefore:

~

M= A K (q) + B K (q;) (106)

BOUNDS ON SEARCH REGION - MODE ATTENUATION

As discussed previously, the eigenvalues of Bjuation 91 will lie in the
upper half of the q1o-plane (i.e., in the region Im(q1o) > 0). Thus the lower
bound of this region is the real axis. Although a discussion of the left and
right boundaries of the search region will be postponed for a later section
(Section 6), an upper bound of the search region will be obtained here in

terms of the maximum attenuation of the strength of a mode per unit length.

From Bjuation 66, it is seen that each modal contribution to the total
-jpnr
field has an exponential dependence e . Since the pn are complex with

Im(pn) < 0, the amplitude of each mode will fall off exponentially. Thus, if:

pn =a + jb, £ <0

51




ESD-TR~-81-102 Section 3

then

-jpo r
Since b is negative, e n will decrease in amplitude as r increases.
- r
Typical values of r are generally large enough to make e n negligible for
all |b| greater than some positive number. The relative decrease in the field

contribution from the nth mode over a single unit of length is given by:

-jp _r(r+1) [
e
e

so that the loss in dB would be given by:

-Jje

n b
= - = - = = 107
L 20 log, . e | 20 log, (") 20 b log, je {(107)

10

Suppose a maximum value of Ly is specified, say Lhax® Then roots oy will be

sought, such that:

-b (20 log10e) < Lmax

or

L
max

20 1oq1oe

b = Im(pn) > (108)
Equation 108 represents a bound on the region in p-space for which the mode
attenuation per unit length would not exceed Loax® This condition must now be

converted to q10-space. To accomplish this, Hjuation 92 is written:

2/3
(n) kO

- 109
tan a1 (kn H1 tan a1) ( )
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where
2
°n
A =1 - —
n " 2
0
and
A | << 1 (110)
n

under the assumption that |pn| = |ko|, which will be shown to be valid

later. Thus:
/ An
= - = - —_— ce e 11
o k 1 An k (1 5+ ) (111)

where Hjuation 110 was used to obtain the Taylor series expansion in Hjuation

111.
Therefore,

o)

n

= -3 11
A 2 {1 X (112)
L. particular,
2
Im(A ) = -~ =— Im{(p ) (113)
n ko n

Using Bguation 113 in Hjuation 109 yields:

K 2/3
(n) 0 2
Im (q10 ) = - W ko Im(pn) (114)
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and using Equation 114 in Equation 108 results in:
Im(q,,) < U (115)

where

2/3
k
o] I"max

U = 2 —_— (116)
0 tan a1l 20 log1oe

Therefore, U as defined in Bgjuation 116 will be used as an upper bound of

the search region, with Lma being specified. Thus the search for eigenvalues

X
will be carried out in the band in the q10—plane defined by:

0 < Im(qm) < U (117)

SEARCH METHOD

The procedure used to find the zeroes of:

G (q,,) = ]a(qm)] =0 (118)

18

in the complex plane is described by Morfitt and Shellman and reviewed in

Reference 10. The procedure will be denoted herein as the MODESRCH method.

18Morfitt, D.G., and Shellman, C.H., MODESRCH, An Improved Computer Program
for Obtaining ELF/VLF/LF Mode Constants in an Earth - Ionosphere Waveguide,
Interim Report 77T prepared for Defense Nuclear Agency, Naval Electronics
Laboratory Center, San Diego, CA, 1 October 1976.
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The method assumes that the function G4 is analytic everywhere within the
region of search, and thus does not permit the presence of poles in this

region. The function G1(q10) satisfies these conditions.

The MODESRCH method was applied by Pappert and Goodhart (see
Reference 10) to the ducting problem, where their modal equation was in the

form:
G2(O) =0 (119) .

where 6 is related to 449 and p through Rjuation 89. Their formulation of the
problem differed from the one being presented here in that the function G, is

obtained from the fundamental equation of wavequide propagation:

G2(O) = Rd(G) Ru(O) ~ 1 (120)
where Ry and Ru are the reflection coefficients "looking downward" and
"looking upward", respectively, from a given reference height. Equation 120
does not lend itself to application of the root-finding method to be discussed
below because it contains poles in the region of search. The function

cz(e), therefore, had to be manipulated to produce a pole-free function. This

fact, together with the problems they encountered in solution-switching

between the forms of BEquations 101 and 102, detracted from the desirability of

applying this MODESRCH method to their formulation.

Since the formulation of the problem presented in this report does not
suffer from the difficulties encountered by Pappert and Goodhart [i.e. G1(q10)
is pole-free and no solution-switching is required], the MODESRCH method was

chosen to locate the roots of Bguation 118.

The method utilizes the following fact from complex functional analysis:
In a finite region of the complex g-plane in which no poles of G1(q) are

present and in which the only zeroes of G1(q) are simple zeroes, lines of
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constant phase [i.e., arg(G) = const) may end only at the boundary of the
region or at a zero of G,(q). Figure 8 (taken from Reference 10) illustrates
a rectangular region being searched. This figure shows that a line AB of
constant phase on which arg(G) = 0 has its ends at a zero of the function and
at the boundary of the region. The line HG, on which arg(G)= 0, has both its
ends on the boundary of the region. It is impossible for a line of constant

phase to have each end at a zero of G(q).

The MODESRCH method thus starts from the upper left-hand corner of a
"search rectangle" in the g-plane, and searches along the left-hand boundary
of the rectangle until a value of g is found at which arg{G(q)] = const = 0 or
arg(G) = 180°. Say a phase contour arg(G) = 0 is found at the point A&, as in
Figure 8. This contour is then followed until it either exits the search
rectangle or until it ends at a point within the rectangle. If it ends at a
point within the rectangle, that point must be a zero of the function. Such
is the case in Figure 8, with the zero located at point B. Since a phase
contour arg{G) = 180° must also intersect that zero, this contour is followed
until it exits the search rectangle (point C in the figure). The point at
which this contour exits the rectangle is stored, in order to assure that it
will not be followed again later in the search process. The search then
resumes again at the point A, and the boundary is traversed counter-clockwise

until another value of q is found at which arg(G) = 0 or arg(G) = 180°, The

next sucl »oint in Fiqure 8 is point C. But this contour will not be followed

since it has been previously investigated. Therefore, the search continues
until the contour arg(G) = 0 is reached at point D, a zero is found at point
E, and the contour arg(G) = 180° exits the rectangle at point F. The search
resumes again at D, and the rectangle is traversed until point G is reached at
which arg(G) = 0. This contour is seen to exit the rectangle at point H
without passing through a zero of the function. The search resumes at point G
and the remainder of the rectangle is traversed without finding any additional
contours arg(G) = 0 or arg(G) = 180° which have not been previously

investigated.
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Figure 8. Root finding method for a function G(q).
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The procedure just described is accomplished numerically by dividing the
search rectangle into mesh sguares of side length At as shown in Figure 8, and
by investigating the sign of Im(G) at the corners of the mesh. A change of
sign between two adjacent corners indicates that a phase contour arg{G) = 0 or
a phase contour arg{(G) = 180° passes between these two corners. A change in
sign of Re(G) between the corners of a mesh square through which the 0° or
180° phase contour passes, or between the corners of an adjacent mesh square,
indicates that the phase contour arg(G) = 90° or arg(G) = 270° is nearby and
thus a zero is in the vicinity. The approximate location 9, of the zero
within a mesh square is obtained by an interpolation procedure. The precise

location of the zero is obtained using the Newton Raphson19 method :

qi + 159 - Aqi, i=20,1,2,... (121)
where
G(qi)
A, = ——— (122)
i G (qi)

The iteration in Bguation 121 ends when the magnitude of the correction Aqi
E to the previous approximation becomes less than a specified small positive

number, i.e. when:

|Aqi) < e (123)

19Penm’.ngton, R.H., Introductory Computer Methods and Numerical Analysis,

Macmillian Co., p. 236 ff, New York, NY.
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APPLICATION OF MODESRCH

As mentioned above, the MODESRCH method for determining the roots of the
modal equation requires the definition of a "search rectangle" in the q10-
plane where the roots are sought. The upper and lower limits of this
rectangle were given in Equation 117. It is shown in Section 6 that a left
limit may be determined as well. However, instead of defining the left and
right sides of a search rectangle in which all the roots should lie, it is
convenient to perform the search in subregions. This will have the advantage
of requiring less computer storage space for the searching subroutine. The
subregions are defined as shown in Figure 9. From Rjuation 117, the lower
bound is at Im(q1o) = 0 and the upper bound at Im(q10) = U. [The MODESRCH
program (Reference 18) automatically increases the search region slightly for
numerical reasons.] The first subregion will be the rectangle defined by
-4 < Re(q1o) < 4. Thereafter, subregions of 4 units width are searched,
moving to the left of the imaginary axis, then to the right, then to the left,
etc., as shown in Figure 9. The search ends when two successive regions are

encountered which contain no roots.

Im(q,q)

@ | O q ®@ |6

-12 -8 -4 0 4 8 12 Relq)

Figure 9. Subregions of 9,0 plane for root-finding method.
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The size At of the sides of the mesh square in each subregion is about .1:

At = 1 (124)

and the value of € in Bguation 123 is:

€ = 4t/1000. (125)

However, if, after searching the first subregion, there is any indication that

At is too large, it is automatically made smaller.

NUMERICAL REPRESENTATION OF K1 AND K2 - EXPONENTIAL REPRESENTATION OF COMPLEX

NUMBERS

The functions K1(q) and K2(q), defined in Bguations 81 and 82, are
numerically evaluated for large values of Iql (i.e., ]ql > 4.2) using the
asympotic expansions given in (Reference 14) and summarized in APPENDIX A.
For small values of |q| (i.e., |q| < 4.2) a power series is used
(Reference 14). In APPENDIX A, it is seen that for large values of |q| the
magnitudes of K, and K2 have an exponential dependence (see Bjuations A-11
and A-12), so that it is possible for [K,| and [K,| to become exponentially
large and to exceed the upper numerical limit which a high-speed computer can
consider. It is this fact which prompted Pappert and Goodhart (Reference 3)
to "switch" to a solution of the form of Equation 102 when |q| becomes very
large. Since the formula presented here avoids "switching", a different
scheme must be used to permit evaluation of K, and K2 even when |q| is

exponentially large. This scheme will be defined in the following:

Instead of using two "words" to describe a value of the complex function
K, (or Kz) (i.e., a real value and an imaginary value), three words will be
used. These will represent a real value, an imaginary value and a real

exponent. Thus for example:
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K. =K, e (126)

where

K1 is a complex number and

E1 is a real number
The value of E1 will be given by one of the exponents in Hjuation A-12. The

values of |E1] and E, will be small enough for a computer to handle in a

1
single precision mode. This representation using three numbers to describe a

complex number will be referred to as an "exponential representation."
All arithmetic using the functions X, and Ky will be carried out without

evaluating ef when E is large. Thus, if:

z, =2 ", zZ =ze (127)
then the product:
zZ =2z 2 (128)

will be evaluated by:

z, =122, Ec = Ea + Eb (129)
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where
zZ =2 e (130)
c c
The sum:
zd = za + zb (131)

(E. -E )
Z, =% +2ze ° 2
d a b !
(132a)
E.=E, E >§
or
z. =z e(Ea-Eb) + z
4 “a b’
{132b)

m
i

a - B B, <

The multiplication of Eg with e(Eb-Ea)

is the corresponding multiplication in Equation 132b.

in Pguation 132a is carried out, as

Only when a final answer is required is a complex number z, obtained by

carrying out the multiplication indicated in Egquation 130.

The summation procedure in Bguations 132a and 132b fr - complex numbers in
the exponential representation is valid for two numb - °s. merical
difficulties may arise, however, when more than tv wmper: st be summed.

To illustrate this, consider the following three numbers:

z = 2e300
a
4
= 133
z, le ( )
z = _28300
c
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The sum of these numbers is obviously S = 3e4 = 163,79, However, when summed

in the above order, Equation 132 yields:

S =2z +2z = (24 3e2%8 300 5,300 (134a)

and

0

1
[}

S +5S, + zc = (2-2)e30 (134b)

which does not agree with the actual result. The reason for this disagreement

is the fact that a computer would evaluate 2 + 3e_296 as 2, thus losing the

second term.

The problem described above may be overcome by carrying out the sum in
E
. Ce . . — n
the order of decreasing exponents and, if in the partial sum Sn = Sne the

value §g= 0, setting Eg: 0. The example above would then be carried out as:

S1 = za + zc + zb (135a)
so that
S1 =z, +z = (2 - 2)e300 - Oe300 = OeO (135b)

and
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S=5 +z =e (3 + 0e™4y = 302 (135¢)

EVALUATION OF THE MODAL DETERMINANT

Determination of the roots of HEjuation 118 required the evaluation of the
determinant of the matrix o which, for L = 3, is given in Bquation 44 with h1,

h2 replaced by K1, KZ' Thus:

K1 (qm) Kz(qm) 0 0 0
K1 (qﬂ) Kz(q”) -K1 (q21) -Kz(q21) 0
93 95
lal = | Kjta; ) Kjta;) - T Kildy) - E;— K5y, 0
0 0 K1 (q22) K2(q22) -Kz(q32)
93
0 0 Kia,,) Kyla,y) - ?{; Kylds,)
(136)
where
Km(qm) = Km(qm) -G Km(q1o), m=1,2 (136a)

During the mode searching procedure the value of laf must be determined
numerous times. An efficient .aethod should be used to accomplish this.

However, the standard elimination methods require many summing operations
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which should be avoided as much as possible when expressing the K K

17 72
functions in terms of the exponential representation described above. The

evaluation method should also take maximum advantage of the presence of zeroes

in the matrix of Hjuation 136.

APPENDIX B describes a method for accomplishing this in which the total
number of multiplication operations required in the evaluation of the modal
determinant is on the order of 8(L-1), where L is the number of layers in the
atmosphere. This compares with (2L-1)! multiplication operations required

when evaluating the determinant using a cofactor expansion.

It is also possible using the method described in APPENDIX B, to avoid
any summation operations until all terms in the sum have been evaluated. The
total number of terms to be summed will be 22L-1, and the method described

following Byuation 134 is used to accomplish this.

EVALUATION OF THE DERIVATIVE OF THE MODAL DETERMINANT

Part of the MODESRCH method for determining the roots of Gl(q10) in
Equation 118 involves the use of the Newton-Raphson method (see Reference 19)
described by Bjuations 121 and 122, Since Bquation 122 includes the

derivative G;(q10), this derivative must be evaluated.

If all the elements aij(q) of an N-by-N matrix a are functions of a
variable g, then the derivative of the determinant of a with respect to gq is
the sum of N determinants, each one having the elements of a different row

replaced by the derivative of the elements of that row. Thus, for example,

for a 3-by-3 matrix given by:

(137)
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the derivative of its determinant would be:

A 2 %3 a1 oy 345 811 32 343
dlaol
- - - - 13
a 31 8y 33 | 357 3 a3 Ay ay, ay,(138)
331 %33 %33 a37 335 33 237 335 233

The above rule for obtaining the derivative of a determinant may be
easily applied to 'al in Equation 136. The derivatives of the individual

elements are obtained using the formula:

9 K (g..) 3 K (g..) 3 q. .
mlj— ml] l] =K’(q)t,1<l<L’J=l-1I1'm=1
3 g 3 90 m ij i
(139)

3 q10 3

where Equations 95 and 96 were used and the prime indicates differentiation

with respect to the argument qij' Also:

] - P
L) = .. . = = (.. Nk 1
d q1o Km(qu) Km (qu) tl qu Km(qu)tl (140)

where, from HBjuations 25 and 75, the fact was used that Km(qij) is a solution

of the equation:

2
9" K (q..)
m °ij _
— qij Km (qij) =0 (141)
d q. .
ij

Byuations 139 and 140 may be applied in Bquation 136 to determine the
derivative of {al with respect to 449 according to the rule given in EBEquation

138.
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Each of the individual determinants in Equation 138 will be evaluated

using the same method as that used to evaluate Ia . As previously discussed,
each determinant is composed of a sum of terms and, for numerical reasons,
this sum must be evaluated in order of decreasing exponents of the terms (see
Equation 135). However, since the derivative of a determinant is represented
in Bjuation 138 by the sum of determinants, it might appear that the use of
the summation scheme should be postponed until all terms of all the
determinants in Hyuation 138 are evaluated. That is, in Bjuation 138, each
determinant is composed of the sum of six terms. To avoid numerical errors,
it would appear that the summation method should not be applied separately to
each set of six terms representing the value of each determinant, but rather
1t should be applied to the eighteen terms representing the entire summation
in BEquation 138 (three determinants with six terms for each determinant).

Al though this is possible to accomplish, it would be extremely time consuming,

particularly when the size of the matrix becomes larger.

The number of terms in the total sum representating the determinant

derivative may be made to be the same as the number of terms in the

representation of any individual determinant of which that derivative is
composed. (That is, in the example of Equation 138, the determinant
derivative d|aol/dq may be expressed for cases of interest as a sum of only
six elements.) This stems from the fact that the exponent in the exponential

representation of Km(qij) is equal to the exponent in the exponential

representation of Km'(qij). That is, if:

Em(qij)
Km(qij) = Km(qij) e (142)

then

E (q,.)

. s m ij
Km(qij) = Km(qij) e (143)
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with the q“ being the same in both equations. It should be noted that the

>

notation of Hguation 126 was followed so that Km (qi )} is not necessarily
3 no-

equal to the derivative of Km(qij) . The fact that the E, are the same in
Equations 142 and 143 may be seen from examining the derivatives of the

asymptotic expansion of Km in APPENDIX A.

Thus in each of the determinants of which alall/8q1 is composed, the
value of the exponent of the (i,j) term would be identical. This fact will
lead to the terms of the sums representing each determinant having the same
expopents for each determinant. Tb illustrate this, Equation 138 will be used

with:

a., =a.,, e (144)

a..l:d_‘e 1) (145)

Then, from Equation 138:

d
iao{ = S, +S_ + S
dq T M 2 3
where
€ € € € € €
1 2 3 4 5 6
S1 = b11e + b12e + b13e + b14e + b15e + b16e
€ € € € € €
1 2 3 4 5 6
S =
5 b21e + b22e + b23e + b24e + b25e + b26e
€ € € € € €
1 2 3 4 5 6
= > 14
53 b319 + b32e + b33e + b34e + b35e + b36e (146)
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where the ei's are the same for S1, 82 and 53, 1 <i<6.

Since these €;'s are the same, the respective terms may be summed without

incurring numerical difficulties. Thus:

d]uol € € € € € €

= + 147
aq c.e +ce + cqe +c,e +cge cee (147)

where

< i 1
3 b1i 2 3’ 1 i <6 (148)

From Bjuations 146 and 147 it is seen that, using the summation scheme for
exponential representation, the number of terms to be summed in order to
obtain the determinant derivative is the same as the number which must be

summed for the determinant itself.

SAMPLE RESULTS

A method has been described above for numerically determining the roots
in d,o-Space of the modal determinant given in Bquation 136. For the

refractivity profile shown in Figure 10, the results for the case of

transmission frequency of 2.2017 GHz are shown in Figure 11. The value of

{
Lmax used in Bjuation 107 was .375 dB/km. E

Each "dot" in the figure represents a mode. For comparison purposes, an
illustration of the same modes in a space similar to one utilized in
Reference 7 is also included as Figure 12. Figure 12 plots the location of
the roots in terms of Re(8) with 6 given in Hjuation 89, and the mode

attenuation per kilometer defined by Equation 107.
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In Figures 11 and 12, the corresponding regions in which the roots lie
are indicated. Thus the roots lying in region A of the q,o-plane in Figure 11
correspond to the roots lying in region A of the complex plane shown in

Figure 12. The approximate number of roots in each region are:

Region No. of roots
a 34
B 35
cC 67
D 344

An interesting result in the comparison of the two figures is the large
variation in root-spacing that occurs from region to region in Figure 12.
Thus the 34 roots in region A in Figure 1l are essentially located at a
"point” on the scale of Figure 12, Similarly, the 67 roots in region C 1in
Figure 11 are all clustered in a relatively small region of Figure 12. The
magnified plot of the roots shown in Figure 13 (corresponding to Figure 12),
demonstrates this to be true. The reason for this behavior is that the
abscissa, Re(d), 1s an entirely different quantity from the ordinate,
attenuation/km. Indeed, had the roots been plotted in a 9-plane in which the
axes were Re(9) and Im (68), then the behavior would have been appreciably
better. MNevertheless, it is to be noted that this poor behavior was not
observed 1n similar plots presented in Reference 9. This is probably due to
the difference 1n mathematical formulation in Reference 9, including

specitications of a "reference height" within the duct (see Section 5).

It 1s apparent from Byuation 89 that, for all the roots of interest, the
corresponding values of pn are very close to the value of ko, because of the

smallness of the values of 8 for the roots in Figure 12,
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NORMALIZATION OF REFRACTIVITY PROFILE

(n) obtained for a given

It will now be shown that the roots 949
refractivity profile M(z) are identical to the roots that would be obtained
for a profile with the same refractivity gradients, but normalized so that
M(0j) = 0. That is, the roots would be the same for the two refractivity

profiles shown in Figure 14.

Using BEguation 7, let the unnormalized modified refractivity be given by:

2 M (2) . 1078 -z - H) tana, 1<i<L (149)

Then a modified refractivity profile Mi(z) with the same gradients

(characterized by tan ui) would be given by:

2 ¥ (2) . 1078 = (2 - H)otana, 1€1cL (150)

Since 1t is desired that ﬁ:(z) have the value 0 when z = 0:

H. (151)
1

[
o

Since Mi(z) and ﬁ:(z) have ti.e¢ same gradients, the difference A between

2“1(2) X 10-6and Eﬁg(z) X 10-6 at each value of z will be constant. Thus:

H, tan 01

M, (0) 3

1

= M, (z) - M (2) = const = M (0) - M (0) —
2x10
(152)
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Figure 14. Illustration of an unnormalized and a corresponding normalized
refractivity profile.
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or, using Equations 149 and 150 in Equation 152,

(Z-Hﬁ mnai-(z—ﬁﬁ mnai = - H, tan a
or

H. tan a, - H, tan a, = - H, tan a, (153)
1 1 1 1 i 1

Now the eigenvalues of the modal determinant for the refractivity profile
Mi(z) will be the same as the eigenvalues of the modal determinant for the
refractivity profile ﬁ:(z) if the qij' 1<1<L, j=1-1,1i are the same for
each profile. For the profile Mi(z) given by Byuation 149, the values of qij
will be given by Equations 95 to 97, with Equation 97 representing the

dependence of q.lj on the H as:

2/3
kO

.= - H, . .t . 1
slj Tt-:-a_nTlr [H1 tan 0.1 Hl. tan al + z] an all (154) r

For the profile ﬁ;(z) given by Bjuations 150 and 151, the values of qij will

be given by Hyuation 95 to 97 but with: 1
K 2/3 _
Slj = W [— Hl tan Qi + Zj tan Qll (155)

But from Byuation 153, the value of sij

in Equation 154, Therefore, the values of qij are the same for

in Bguation 155 is the same as the
value of sij
the two profiles, and thus the values of g, are also the same.

It is emphasized here that the fact that the values of q1o(n)

are the
same for the normalized and unnormalized profiles does not imply that the

fields obtained in Equations 67 for the two profiles would be the same. In
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although the q10(n)

-jp_r
of e " and An in Equations 67.

t

general, these fields would not be the same for the two profiles since,

are the same, the p, are not.
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SECTION 4
NUMERICAL DETERMINATION OF THE FIELDS

RELATIVE FIELDS IN TERMS OF q10(n)

Y

Section 4

Once the zeroes of the modal determinant of the problem are found, the

electric field magnitude relative to free space due to a transmitter at height

A

transaitter, Thus
‘Jpnr

A =8 L A Ee
n ' n ' n

where, from Equations 57, 58 and 66:

In Equation 156, fn is obtained from the eigenvalue q1o(n) through

Equation 94:

79

o may be determined from Bjuation 67a at a height zp and distance r from the

(156)

(157)

(158)

(159)
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// q (n)
p =k // 1 - H, tan a, - 19 (160)
n 0 2/3
| tan a1'
Equation 158 may be expressed in terxrms of q1o(n) by writing:
P
A = Y “n
n alal 3 4,
ag ap _ (n)
10 P =Py T40 T 49
But, from Equation 92,
2/3
%y 2 %0
3p X tan a,
0
Therefore
K 2
A= - °
n 2/3 (161)

k

—— ¢] 3 al
2 pn ]tan a1f aq (n)

10/ Q49 7 949
The value of Pn in Equation 161 may be obtained from Equation 160 and the

value of 8]a]/8q10 may be obtained using the method discussed by BEguations
137 to 148.

The factors An, En and exp (-jpnr) in Byuation 156 are evaluated using
the exponential representation illustrated in Bguation 126, and the product of

these factors is evaluated using Equations 127 to 129.

Referring to Bquation 159, the qp are defined using BEguations 95 to 97

by:

+ S e

g = 940%R R

R

B0
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where

= 16
tR |tan QR ( 3)

and

2/3

= - t 16
SR TE;;—E;T [31 tan @, HR an aR + zR tan aR (164)

where zp is the height of the receiver located in region R. If the
transmitter is at a height Zn which is located in region T, then Qo is given
by Equations 162 to 164 with R replaced by T. The values of dp and qp used in
Equation 159 are those for which 90 = q10(n) in BEquation 162.

DEFINITIONS OF THE MATRICES TAR AND TBR

Equation 159 requires the values of the determinants ITARI and ITBRl .

The matrices 'I‘A and TBR will first be considered. These were discussed

R
briefly following Bjuation 47. For clarity, they will be redefined here using

the Ki solutions rather than the hi solutions.

81

e ——— e et it Aenataiin : i
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The modal matrix for a three-layer atmosphere is given by

(see Byuation 136):

N
~ - 0 0 0
K.i(qw) K1(q10)
K1(q11) Kz(q11) -K1(q21) -Kz(q21) 0
3 9
a = Kila, ) K3tay,) - 517 Kita,,) - f K3ld,,) 0
0 0 K1 (q22) Kz(qzz) Kz(q32)
a3
0 0 K1 (qzz) KZ(q22) - g Kz(q32)
(165)
where, as in BEquation 136a.,
= - - = 16
Km(q10) Km(qm) G Km(qm), m=1,2 (166)

As in Hguation 46, a vector BT is defined which represents the contribution to
the boundary conditions of the particular solution of the inhomogeneous
differential Bguation 18. The subscript T indicates the region in which the
transmitter is located (1 < T < L). For the example of L = 3,

B

612

61 = 813 (167)

0
0

11

0
21
22 (168)

wW
wm W W W

24

82

bt EE———— T Rr— s . o
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B = 0 (169)
31

\63 2
The values of the an will be given below. Thus, when the transmitter is in

region 1, Equation 167 is used; when the transmitter is in region 2, Equation

168 is used; and when the transmitter is in region 3, Bjuation 169 is used.

The matrix TAR is constructed by replacing the first column of the Rth

pair of columns of & by the vector 8 1 <R <L-1, and the matrix TBR is

TI
constructed by replacing the second column of the Rth pair of columns of a by
Bpr 1 <R < L-1. The matrix TAL is not considered as explained following
Equation 47. The matrix TBL is constructed by replacing the last column of

o by the vector BT.

Thus, T is formed by replacing the first column of a by B,; and
Al T

Ta2

replacing the second column of a by Bpi ’I‘B2 is formed by replacing the fourth

is formed by replacing the third column of a by BT' TB1 is formed by
column of a by BT; and TB3 is formed by replacing the fifth column of a by BT.

A discussion of the elements of the BT vector follows. The elements of

Bp for T = 1 were given in Equation 46 using the solutions in terms of the h;.

83
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Suppose the solution of the inhomogeneous differential equation in region

1 were given in terms of Bguation 84:

H1 = R1 K1(q1<) K2(q1>) (170)

where q,¢ and q,, are defined following Bguation 36. Then the elements of 81

may be given in terms of the K solutions as:

Byy = - Ry Kyla K ta, )
Biy = = Ry Ky(a,p0Ky(q,,) a7
Biy = - Ry Kila p)Ky(a,,)

where the Bim refer to the corresponding elements in the vector of Hjuations

167. If the solution were given by Equation 85:

II1 = - R, K1(q1>)K2(q1<) (172)

then the following set of values of the B1m would be valid:

Byy = Ry Kylq 0K (q, )
812 = R1 Kz(q1T)K1(q11) (173)
By3 = Ry Kylq,)Kila, )

In an entirely similar manner, if the solution in region 2 is given by:

84

'
»
| N
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1'[2 = R2 K1 (q2<)1<2(q2>) (174)
then the elements of 82 are:

821 = R2 Kz(qZT)K1(q21)

1

a2 = Ry E;_ K, (@yp)KT(a,,)

Byy = 7 Ry Kylayy)Ky(ay,)

824 = - R2 K1(q2T)K2(q22) (175)
and if the solution is given by:

I, = R, X (4, )K,(q, ) (176)
then

Byy = = Ry Klapp)K,(qy,)

5

By = " Ry a K (@, )K5(d,,)

823 = R2 Kz(qZT)K1(q22)

Byrg = Ry Kylapp)Kilay,)

In region 3, if the solution is given by:

HB = R3 K1 (q3<)1(2(q3>)

85
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then the elements of 33 are:

=R

83 3 Kp(A3p)K,(ay,) (179)

q’
3 .

By, = Ry S K (A p)XiMas,)
and if the solution is given by:

ﬁ:—R { 1

3 3 K (ay,)K, 0, ) (180)

the elements of 83 are:

B = - R_K (g, _)K (q.,.)
31 371035702 32 (181)
93
Byp = ~ Ry E; K la;50K50a,,)

~

In region 3, the solution H3 must satisfy the radiation condition, thus
precluding the use of Byuations 180 and 181. In region 3, therefore, 83 will

be defined using Equation 179.

Theoretically, either Bguations 171 or 173 may be used to define
81;

however, there is often a strong preference as to which expression for 8, and

and either Equations 175 or 177 may be used to define 82. Numerically,

82 to choose. The basis of the choice will be somewhat similar to the basis
used to choose BEguation 179 instead of Bjuation 181 to define the vector 83 in
region 3. Just as in region 3 the form of the solution is used which "best
satisfies" the boundary and radiation conditions, so too the form of the
solution which most closely characterizes the field in each respective region
will be used. Heuristically, the general solution will have to "work harder"
to satisfy the boundary conditions when the particular solution is farther
from the exact solution. Conversely, the general solution will be more
numerically correct if the particular solution more closely characterizes the

field in the region of interest.
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To determine which solution best characterizes the field in a given
region, the following general information will be used, and verified in

Section 7. In a duct environment,

1. The only instance in which the field in region T could be much less
at the upper boundary of the region than at the height at which the
transmitter is located, is when tan % < 0, T > 1 and the field will be that
due to the "trapped modes" (see Section 6).

2. "Trapped modes are those for which the eigenvalues q1o(n) lie near
the negative real axis, which implies from Bgquations 162 through 164 that

(n) (n}
<

qp and Aoy will lie near the real axis.

From Equations 162 through 164:

Re(qT<) < Re(qT>) when tan an > 0 (182)

Re(qT<) > Re(qT>) when tan a_ < O (183)

When Re(q1o) << 0, it may be seen from APPENDIX A and Hjuations 182 and 183
that:

|K1(qT<)| > |K1(qT>)|, tan a; > O when |K1(qT<)| >> 1 (184)

|K1(qT>)| > |k, (agp )], tan ag < 0 when |x1(qT>)| > 1 (185)
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when
lxz(qT<)| ~ |K2(qT>)| ~ 1 (186)

From Fguations 184 to 186, for tan aT > 0, it may be concluded that the field
in region T due to trapped modes will not be appreciably less at the upper
boundary of the region than at any point within the region when the solution

in that region is given by:

HT ~ K1(qT>)K1(qT<), tan o >0 (187)

For tan % < 0, the field may be appreciably less at the upper boundary of
region T than at any other point within the region when the solution in that

region is given by:

~

HT ~ K1(qT>)K2(qT<), tan a_ < O (188)

Therefore, from item (1), the particular solution of the differential

equation will be given by:

K1(qT<)K2(qT>), tan % >0 or T =1 (189%a)
]TT = RT. 4
- 1
| K1(qT>)K2(qT<), tan a < 0and T % (189b)
88
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The values o2 the elements in the vector BT will be determined based on
whether the solution is given by Equation 189a or by HBjuation 18%b. Thus, the
elements of Bt will always be given by Bquation 171. The elements of 82 will
be given by Byuation 175 if tan a2 > 0 and by Bjuation 177 when tan az < 0.

All evaluations of the ITARl and |TBR|, as well as of E, in Bquation 159,
are carried out using exponential representation.

EVALUATION OF THE DETERMINANTS |T_ _| AND |T

AR BRl

The form of the matrices T __ and TB (i.e., the locations of their zero

AR R
elements) depends on the value of R and the value of T. The value of T would
affect whether B is given by Bguation 167, 168 or 169, The value of R would
affect the column of a (Equation 165) which the vector B replaces to form

Tar °F Tar

It is clear from the three-layer example used in Bjuations 165, 167, 168
and 169 that, if R = T, the zero elements of TAR and TBR are in the same
location as the zero elements of a. The same algorithm used to evaluate |a| r

(see APPENDIX B) will then also be applicable to the evaluation of

‘TAR] and ]TBR] .

To demonstrate the general evaluation procedure when R ¥ T, only a single
example will be used, with the application to other cases being
straightforward. For this example, T = 1, R = 2 will be used, and the
determinant 'TAZI will be evaluated. 1In this case, the matrix TAZ will have

the form:

89
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//;1(q ) KI(q1O) B 0 o -

10 11
/
K1(q11) K1(q11) 812 - K2(q21) 0
a5

PA2 = K1(q11) Kz(q11) 813 aT K2(q21) 0

0 0 0 Kz(qzz) Kz(q32)
a3
0 0 0 Kz(qzz) - a—:z K2(q32)
(190)

Now comparing T with a, it is seen that TA has non-zero elements in the

A2 2
same locations as the non-zero elements of a, except TAZ has the element

811 at a position in which the matrix o has a zero. But from the definition

of a determinant in terms of a cofactor expansion, it may be shown that:

T .| = |T | + |7 | (191)
- a2, _ -
Byg =0 By =8y3=0

A2 a2|

Now ITAz’ l has non-zero elements in the same locations as the non-zero
Biy= 0

elements of \al, and may therefore be evaluated using the same procedures as

those used to evaluate |a| (APPENDIX B). The second term on the right side of

Bquation 191 may be written as the product of 811 and its cofactor:

|TA2l | = 811|M(B11)| (192)

Byp =By3=0

where M(811) indicates the matrix which is the minor of 811, and is given by:
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/
[ ¥qylagy) Kylayy) - Ky(ay,) °
) 1
| Kildy,) Kotagy) - ET'KE(q21) 0
M(811) =
\ 0 0 K2(q22) - x2(q32)
\ % )
\O 0 Ké(q22) - a; K;(q32) (193)

The determinant of M(811) (also called the cofactor of 811) is just the
product of the determinants of the -upper left 2-by-2 matrix and the lower

right 2-by-2 matrix:

K1(q11) Kz(q11) Kz(qzz) - Kz(q32)
{
|M(8”)l = X 7 {(195)
Kl(q11) K2<q11j K2(q22) - E; Kz(q32) i

The evaluation of the determinants on the right side of Equation 194 is
straightforward. However, the first determinant may be identified as tne
Wronskian given in Equation 83, so that this determinant need not be

numerically calculated.

Substituting Bjuation 194 into Bjuation 192, the result may be used in

Equation 191 to evaluate 'TAzl .
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SECTION 5
VERIFICATION OF CALCULATION METHOD

GENERAL

A method is presented in the previous sections for calculating the fields
relative to free space in a duct environment. The method has been programmed
in a computer model called DUCT. 1In this section, the predictions using DUCT
are compared with measured fields in an environment containing surface ducts
and in an environment containing elevated ducts. In each case, the measured

fields are compared with:

(1) the mode sum predictions (Equation 67c¢) in which the phase of each
modal contribution is fully taken into account; and
(2) the power sum predictions (Equation 67d) in which the phase of each

modal contribution is assumed to be random.

SURFACE DUCTS

Measurements in an environment containing a surface duct were documented

in several referenceszo’21

(see also Reference 5). The refractivity profile
used to calculate the fields is illustrated in Figure 15. It is the same as
that used by Pappert and Goodhart as an approximation to the profile observed
over the propagation path during the period in which the measurements were
made. It 15 normalized to zero at the ground. In Section 3, it was shown

that this normalization does not affect the location of the eigenvalues

2OPappert, R.A., and Goodhart, C.L., "Case Studies of Beyond-the-Horizon

Propagation in Tropospheric Ducting Environments," Radio Science,
Vol. 12, No. 1, pp. 75-87, January-February 1977.

21Pappert, R.A., and Goodhart, C.L., "A Numerical Study of Tropospheric

Ducting at HF," Radio Science, Vol. 14, No. 5, pp. 803-813,
September ~-October 1979.
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d,0'™, but it might affect the value of the fields. The effect of profile

normalization on the calculated field is discussed in Section 7.

Comparison of DUCT predictions and measurements are given at frequencies
of 65 MHz, 170 MHz, 520 MHz and 3300 MHz; at distances 111.2 km and 222.4 knm;
for receiver heights 30.5 m and 152.4 m; and for transmitter heights that
varied continuously from the ground to about 500m. Computationally, it is
more convenient to set the transmitter heights at 30.5 m and 152.4 m and have
the receiver heights vary continuously. It was verified that the computed
results using these propagation circuits were identical to those for which the
transmitter and receiver locations are reversed, as should be the case from

Equation 68,

The comparison of DUCT predictions with mesurements for different
parameters are found in Figures 16 to 19, The figures denote the location
(height) of the duct by a vertical dashed line and the height of the
transmitter by a large asterisk. Also denoted under the heading "normal" is
the range of relative fields over the heights shown that would be obtained if
the duct were not present. This field is the median field due to troposcatter

effects and was taken from Reference 5.

Fiqures 16 to 19 show an overall excellent agreement between measurements
and predictions, particularly since the prediction model is based on idealized
assumptions (e.g., lateral homogeneity) that only approximate reality. The
predictions are significantly closer to the measured data than they are to the
corresponding median troposcatter fields. 1In Section 7, the divergence of the
power-sum solutions from the mode sum solutions for higher frequencies and at

higher altitudes is discussed.
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Figure 16. Comparison of predictions with measurements for surface duct,

f = 65 MHz.

for the bottom two figqures.)

T —

96

{Mode sum and power sum predictions are identical




ESD-TR-81-102 Section 5
-5 J RANGE .2 km —1 5 : RANGE = 1.2 km
NORMAL. : - 42dB TO-2048 { '\ NORMAL:~40dB TO -i0dB
FREQ. 170 MHz HEAN
| #® XMTR. HEIGHT :
al- Y MODE SUM -
: ... ... POWER SUM 4 - ,
. —-— MEASURED :
e - —=— puct :
aL 3 13 !
: Pl - .3*—' i
z | z l .
|t [ &
X
3 2| 9.2-—' {
w ' " l ‘
P S x »
l - l \
.|-| \' i -| \
r e | ?
o I IR - ——1 1 o 1 ( 1 -
=24 -ie -8 0 8 6 -i6 -8 0 8 16 24
HEIGHT GAIN (REL.TO FREE SPACE,dB) HEIGHT GAIN (REL.TO FREE SPACE,dB)
SMEE RANGE =222.4 km 5 | RANGE:= 222.4
3 NORMAL: ~60dB TO -55dB . NORMAL: — 48 dB T0-40dB
4
E. £°ri
z z ||
e =R
5. g'z'l
o w
T S la&
A
. oe o) l O S o g J
-12 -8 -4 0 4 8 -24 -6 -8 0 8 16
HEIGHT GAIN (REL.TO FREE SPACE,dB HEIGHT GAIN (REL.TO FREE SPACE.dB)

Figure 17. Comparison of predictions with measurements for surface duct,
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he mode-sum predicted values in Fogures o to 19 are essentually
vdentical to the tdredicted values ot Pappert and Qodhart (Reterences S and
20, The wmethod of Pappert and cdoodhart, however, regquites speciticdation ot oa
tetetence herght D at which the vtetlection coetticients ot Hpuation 120 ave
caloualated. They andicate that using therr tormulation ot the problem, thear
rtesulits can be dittervent tor dittevent vreterence hewghts, I Reterence b, P
they present two examples it which the predicvtions usaing D= O oarve dittervent 5
trom those usiig D= 182,39 m. Mese are shown an Brgure 20 an whaich they arve
compdred with the tesults using the DUCT program, In both canes, the DURCT
vredictions ave i agreement with the D - 182,39 m vesults which Tappert and
Goodhatrt state are prertervable to the D - O results and which agree with the

measurements more closely,

ELEVATED DUCTs
Measurements inoan environment containing an elevated duet weve
documented by sk llman and Woods  (Retevence 9, They compared thear
measurements with predictions obtarned using the method of Mppert and
voodhart (Reterence S)Y., The retractivity used here to caloulate the tields s
tilustrated in Fogure 21, Me tetractivity s the same as that used by
Skaillman and Woods as an approXximation ot the profile observed over the
propagation path duaring the period in which the measurements weve made. 1t s

normalized to zevo at the ground.,

compatrisons of predictiont with measurements are gqiven an Puagure 22 tov
= Q49,0 MHe and an Fogure 23 tor fo= Q001,70 MHZ., The predactions obtained tor
the J49. 2-MHe case were the same as those obtained by 8Kl lman and Woaods,
However, skillman and Woods dud not obtain predictions tor the

2200, T-MHe case,

e overall agreement between the measurements and predictions shown an
Figures 20 and 2V s consitdered excellent, The divergence ot the power  suam
solution trom the mode sum solution an the tegion above the duet 18 aven mote

pronounced in these results tor an elevated duet than they were tor the

surtace-duct cases constdered above,  Thais s discussed fuarther an Section 7,
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SECTION 6
EIGENVALUE ANALYSIS

GENERAL

In Section 3, a method is described for determining the roots, or
eigenvalues, of the modal Equation 91 in a complex space, referred to as Q40"
space. In this section, it will be seen that the locus of the eigenvalues in
q,o-Space have certain distinct characteristics that can be predicted from the
refractivity profile. The roots in different portions of this locus may be

associated with different types of contributions to the fields in a duct.

The correspondence between the locations of roots in 6-space (see
Section 3) and specific types of field contributions (i.e., trapped waves,
chordal waves, multi~hop waves) was discussed by Skillman and Woods (Reference
9). As will been seen below, use of the q,p-Space for this purpose along with
the formulation of the problem utilized in Section 2 make possible the
prediction of the location of the roots that contribute to trapped waves,

leaky (chordal) waves and multi-hop waves,

To determine the field contribution of a given (say nth) eigenvalue to
the field, the corresponding term in the field sum in Bquation 66 is used.

Thus, the field contribution of the nth eigenvalue is given by:

-jer
A =8 |AEe | (195)
n o] nn

where the definitions of the terms are given in Section 2. From the
definition of the "power sum", Bquation 67b, it is seen that the contribution
of the nth eigenvalue to the "power sum” field is identical to Bguation 195.

Thus, separate data for "mode" and "power" results are not needed.
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The parameter En 1s a function of the receiver height Zg and the
transmitter height Zope and can in principle be cast in the form of

Equation 68:

En = un(zR) u (zT) (196)

In order to determine the contribution of the nth mode to the field at a
receiver height zZpr @ E?ansmitter height Zqp must be specified. It is seen
from Hjuation 196 that, regardless of the value of Zop the variation of E
(and therefore of An) will be the same except for a factor un(zT). When
expressing the result in dB, the variation of ADB as a function of 2N will be

the same for different values of Zqr except for an additive constant.

COMPUTED EIGENVALUE LOCATIONS - ELEVATED DUCTS

To determine the locations of the eigenvalues in the q10-plane, the
refractivity profile shown in Figure 24 will be assumed. The eigenvalues are
determined using the methods described in Section 3, for four different
propagation frequencies: 149 MHz (Figure 25), 449 MHz (Figure 26), 2.2017 GHz
(Figure 27) and 10 GHz (Figure 28). (It is emphasized here that the
eigenvalues are independent of the location of the transmitter and the
receiver.) In each of these figures, the location of an eigenvalue is
indicated by a dot on a graph of the q10—p1ane in a portion of the figure.
When the dots are sufficiently close together on the scale used, they will
give the appearance of a continuous line or area. The eigenvalue plot in

Figure 27 was shown in greater detail in Figure 11.
In each of the eigenvalue plots, the following regions may be identified:

1. A region in which the eigenvalues lie on or near the real axis

(region A in Figure 11).
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Figure 28. Eigenvalues and some of their field contributions for refractivity
profile of Figure 24, f = 10000 MHz.
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2. A region in which the form of the locus of the eigenvalues is "wavy,"
but in which the overall trend is diagonal from lower left to upper right
(region D in Figure 11). The lower left origin of this region corresponds

approximately to Re(q1o) = 0.

The locus of the eigenvalues connecting the two regions above may be
identified as consisting of two additional regions: one which has a wavy form
and extends from Re(q,y) = 0 in the negative real direction (denoted as region C
in Figure 11); and finally a region (denoted as region B in Figure 11)
connecting the eigenvalues on the real axis with region C. The locus of the

eigenvalues in region B is approximately linear.

FIELD CONTRIBUTIONS FROM EIGENVALUES IN DIFFERENT REGIONS OF THE q10-PLANE

For the refractivity profile and frequencies considered above, it was
shown that the locus of the eigenvalues in the q1o—plane is always composed of
well-defined sections, or regions. It will now be shown that all eigenvalues
in the same region will contribute to the propagated fields in a similar
manner. This is accomplished in Figures 25 to 28 by indicating the field
contribution of various eigenvalues. In each of these figures, the graph of

the field contribution versus height corresponding to a given eigenvalue is

joined to ihat eigenvalue (in the q10-plane) by an arrow.

£=149 MHz

The 149-MHz case is considered first. The four different regions of the
locus of the eigenvalues (Figure 25) are identifiable in this case, but they
are not as distinct as for the higher frequency cases. The field
contributions for modes in each of these regions are illustrated as a function

of height in the figure.

In Figure 25, the eigenvalue that lies near the real q1o-axis and
corresponds to plot A contributes principaily within the duct with a small
amount of leakage above the duct and even less below it. The single "bump” in

the curve in plot A indicates that the corresponding eigenvalue represents the
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"fundamental" waveguide mode of propagation.

The eigenvalue corresponding to plot B in Figure 25, which lies in what
has been identified as "region B," prcduces a field which is as strong above
as it is within the duct. It falls off gquickly, however, as the receiver
neight decreases. The number of "bumps" in the curve indicates that the

corresponding eigenvalue represents a wavequide mode of fourth order.

Plot C in Figure 25 shows the field contribution due to an eigenvalue in
region C. Here, the field is largest above the duct and falls off slowly as
the receiver height is decreased until a point is reached at which the field

decreases much more rapidly.

The effect of an eigenvalue in region D is shown in plot D, which is
similar to plot C except for the fact that in plot D, the decrease in field
strength with a decrease in altitude is approximately the same at all heights,

whereas in plot C there is a sudden drop-off prior to reaching the ground.
£=449 MHz

For the 449 MHz case, the field contributions are illustrated in
Figure 26 (plots A(‘), A(Z), A(3), B, C, D) for six eigenvalues. It is seen

(1) A(2) g (3

that the eigenvalues contributing to plots A represent the
fundamental, second order and third order waveguide modes, respectively. In
each of these cases, the fields due to these eigenvalues are negligible

everywhere excepi within the duct.

The field in plot B is shown to be largest above the duct, but falls off
very rapidly at a height just below the duct bottom. The field shown in plot
C is similar to that in plot B, but the "leakage" reaches further below the
duct before ii falls off rapidly. The rapii fall-off disappears entirely in

the field of plot D in which the ground presente appears to play a role.
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£f=2201.7 MHz

(1) A2) (3

The fields shown in plots A and A(4) in Figure 27 are

’

negligible everywhere except within the duct. Plots A(1), A(z) and A(3)

represent the lowest order wavequide modes.

The fields shown in plots B(1), 8(2) and B(3) are "leaky" above the duct,
but little or no leakage occurs below the duct. Comparing plots C(1), C(Z),

c(3) apa cf4)

with the locations of their corresponding eigenvalues, it is
seen that; as RE(q1O) increases, the height decreases at which the respective
fields fall off rapidly. Once the eigenvalue region corresponding to plots
D(1), D(Z), p(3) and D(4) is reached, there is no rapid fall-off of the fields
at any height. This is interpreted as indicating that the ground contributes

-

to these fields through the mechanism of reflection.

f=10 GHz

The field behavior indicated in plots A(1), A(2), B, C(1), C(z) and D of
Figure 28 are seen to be entirely analogous to those already observed in the
field plots (Figure 27) for corresponding eigenvalue regions for the 2201-MHz

case.

Based on observations for the four frequencies considered, it is
concluded that, when an elevated duct is present, the portion of the
eigenvalue locus on or near the real axis contains the eigenvalues that
describe "trapped waves" existing almost exclusively within the duct., . S%nce
the modal attenuation with distance is given from Bjuation 195 as le n I

7

this attenuation depends on Im(pn) . From BEquation 160 it is seen that

(n) on or near the real axis. The

Im(pn) would be very small for values of 449
trapped waves within the duct, therefore, propagate with little or no

attenuation per unit length.

As the location of the eigenvalues in the q1o-plane moves in the positive

real direction, the eigenvalues begin to represent leaky waves, first to the

v
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region above the duct and then to the region below the duct. The leaky waves
below the duct correspond to the chordal waves referred to by Skillman and
Woods (Reference 9). The leakage reaches lower altitudes as Re(q10) increases
until, in the neighborhood of Re(q10) = 0, the leakage reaches the ground.
Beyond this point, ground reflection becomes important, and the modes can be

associated with "multi-hop" waves.

Te mathematical basis for Re(q10) = 0 to represent the boundary in
qqg-space between eigenvalues which produce ground-influenced fields (multi-
hop modes) and eigenvalues which produce ground-independent fields (chordal
modes) is presented below, Also presented is a criterion for determining the i
limits of Re(q1o) in the q4g-Space enclosing the region of the eigenvalue

locus representing trapped modes (region A).

BOUNDS ON TRAPPED AND MULTI-HOP EIGENVALUES

The eigenvalues of interest will generally lie in a region of q,g-space
of the form shown in Figure 29, where the real dimension is much greater than
the imaginary dimension. This was seen to be the situation in the cases

considered above. Also shown in Figure 29 is the line representing

arg(q10) = 2n/3 . As discussed in Section 3, the eigenvalues q10(“) are the
zeroes of the function:
€1(ay0) = G3laygr Tqqr Ggqr Fppreeerdy ) =0 (1om)
where G, is the value of the determinant in Bgquation 136. The qij are related N
to g4, through Bjuations 95, 96 and 155:
-«
qij = qwti + Sij (198)

116




Section 6

ESD-TR~-81-102

*388193UT 3O sanieausbre bururejuocs sueid oHG JO uoTbai Jo uOTIPIISNTIT OIJPWLYDS g7 2anbTJ

2y

fo— q —=f

117

(%'v) wy




ESD-TR-81-102 Section 6
|tan a1l 2/3
£ [tan ail > 0 (19%)
kO 2/ 6
L. = M ? .
Slj Tgan—al—r 2 (Zj) X 10 Sljreal (200)

and the refractivity profile is assumed normalized to zero at the ground.
Each parameter qij enters Equation 197 through Km(qij)’ m = 1,2, where
Km is a linear sum of modified Hankel functions. In APPENDIX A it was shown
that, if Im(qij) > 0, the asymptotic behavior of each Km(qij) for
arg(qij) < 2n/3 1is different from its asymptotic behavior for
arg(qij) > 2n/3. Since Im(q10)_2 0, 1t follows from Bjuations 198 to 200
that Im(qij) > 0, so that the prior statement is valid for the case under
consideration. Therefore, it is reasonable to assume that, for a particular
qij' the behavior of the function G3 in Equation 197 for arq(qij) < 2n/3
would be different from the behavior of G3 for atg(qij) > 2m/3. If the
functional behavior of G3 is different when qij crosses the line
arq(qij) = 2n/3, then it is reasonable to assume that the locus of the roots
of Gy would be different as well.

Consider, for example, the refractivity profile shown in Figure 24, with
a propagation frequency f= 2201.7 MHz. Using BEquations 198 to 200, Figure 30
illustrates the locations of the qij for two values of 40’ such that only the
d49 (and not the other qij) are on different sides of the line arg{(q) = 2un/3.
The behavior of G3 and the locus of its roots would be expected to be
different for the two cases shown in Figure 30. Similarly, the locus of the
roots of G3 are expected to be different for the two cases shown in Figure 31.

Now if, in the vicinity of arg{(qg = 2r/3 , the roots of G1(q‘0) occur

)
for values of 949 for which nn(q10) i;osmall, then Re(q10) would also be small
for these roots. Since a different behavior of the locus of the roots of
G(q1o) would be expected for values of 9,4 ON either side of the line
arq(q1o) = 2n/3, this difference of behavior would appear to occur near

Re(q1o) = 0. 'This would explain the location in Figure 11 of the boundary
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between region C and reqion D of the locus of the roots. A similar difference
in behavior across Re(q10) = 0 1s observed i1n Figques 25, 26 and 28 as well.
Since 940 1s the value of g (Equation 26) at the ground, it is not at all
surprising that the field contributions of the roots for which Re(q1o) >0
would demonstrate a ground eifect (e.g., plot D of Figure 28), whereas field
contributions of the roots for Re(q10) < 0 would not demonstrate a ground

effect (e.g., plot C(Z) of Figure 28).

The same reasoning would be expected to apply to the fields within the

duct. As demonstrated in the previous subsection, these fields would receive
{(n)

910

of which lie on or near the real 49 axis. The duct boundaries in g-space are

their major contribution from the "trapped" modes, the eigenvalues

characterized by the values of q corresponding to the points A and B in the

modified refractivity profile of Figure 24, These values of g are:

(1) Point A: either qqq Or do,

(2) Point B: either Ay VF 935

Since the eigenvalues contributing to the trapped waves in the duct
satisfy:

Im(qu) = 0, trapped modes (201)

then from Bjuations 198 to 200,

Im(qij) ~ 0, trapped modes (202)
It follows that, for trapped modes, the roots q10(n) are such that, if any qij
crosses the line arg(q) = 27/3, it does so in the vicinity of:

Re(qij) = 0, trapped modes (203)
It follows from Equations 202 and 203 that, for trapped modes, the
roots qlo(n) are such that if any qij crosses the line arg(qg) = 2n/3, it does
so in the vicinity of:
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q.. =0 (204)
] From Bjuations 198 to 200, the value of 449 at which Bjuation 204 holds is:

2/3

513 %o -6
q10=- ti = = mﬂ— ZM(Zj) x 10 (205)

But since the right side of BEjuation 205 is dependent only on the index j and
not on the index i, the value of d10 is the same for the two qij's that
characterize point A in Figure 24 (i.e., q,, and q21), and is the same for the

two qij's that characterize point B (i.e., 955 and q32).

(n)
910
duct would thus be expected to be affected by the value of 40 for which q4,

The locations of the roots which represent the fields within the
(or q21) = 0, and by the value of 40 for which 95, (ox q32) = 0. To
investigate the relationship between these valnes of 449 and the bounds of the
region in the q10—p1ane containing the eigenvalues representing trapped modes,
consider TABLE-1. The information in the table is for the refractivity
profile and frequencies used to obtain Figures 25 through 28. In the table,

trapped modes are taken as those modes for which Im(q1o) < .02,

It is seen from TABLE-1 that, for the elevated duct profile and for the
(n)

10

representing trapped waves in the duct is approximated well by the value of

frequencies considered, the left boundary °*n the 99 plane of the ¢q

449 for which dqq = 0. Similarly, the right bounaary of these trapped modes
is approximated well by the value of 40 for which qyy = 0.

It is also interesting to note from TABLE-1 that the number of trapped
modes between the right and left boundaries of the trapped-wave eigenvalues
(density of the eigenvalues in q1o~space) increases only logarithmically with
frequency. Therefore, mesh size in the numerical method descibed in Section 3

to locate the roots need not be altered appreciably for different frequencies.
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APPLICATION OF EIGENVALUE ANALYSIS TO TWO-DUCT PROFILE

In order to verify the concepts described above for estimating the
locations of trapped modes, the theoretical two-duct geometry illustrated in
Figure 32 will be considered with a propagation frequency of 449 MHz., The
computed eigenvalues are illustrated as the dots in the Q19 plane in Figure
33. The eigenvalues in this figure appear to lie along two separate loci, one
characterizing each duct. The trapped waves for each duct are easily
identifiable as those lying near the real axis. Field plots in Figure 33
1llustrate the field contributions for each of the labelled different
eigenvalues. (Note that the labelling is not in any apparent sequence, but
rather represents the number of the mode in the order in which it is

calculated using the MODESRCH method described in Section 3).

In Figure 33, plots 82, 81 and 80 are shown to correspond to the trapped
waves in the higher duct. Plot 56 represents a leaky wave from the same
duct. Plots 44, 46, and 47 are shown to correspond to trapped waves in the
lower duct. It is interesting to note that the eigenvalue corresponding to
plot 82 (i.e., the leftmost eigenvalue) represents the fundamental waveguide
mode for the system, and contributes to the field in the upper duct. Plot 44,
on the other hand, represents a higher mode of the system, but is the

fundamental mode of propagation in the lower duct.

Using BEguation 205, the boundaries of the region in the d,9 plane

containing the trapped modes of the lower duct are approximated by:

and
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ESD-TR-81~102 Section 6

while the corresponding actual boundaries for the eigenvalues shown in
Figure 33 are -10.8 and -8.1. The boundaries of the region containing the

trapped modes of the upper duct are approximated by:

s
33
q, = -——=-18.4
1
0 £,
s
44
g, = - —— = - 14,1
10 t,

while the correspording actual boundaries for the eigenvalues are -~17.7 and

-14.5.

The method described in the preceding subsections, for approximating the
boundaries of the region in the d49 plane that contains trapped modes, is thus
seen to have a more general validity. Its application to ground-based ducts

will be demonstrated in a later subsection.

COMPUTED EIGENVALUE LOCATIONS - SURFACE DUCTS

The locations of the eigenvalues in the q1o-plane will now be
demonstrated for the surface duct refractivity profile illustrated in

Figure 34 at four propagation frequencies: 65, 170, 520, and 3300 MHz.

The eigenvalue locations for the . 1Hz case is illustrated in Figure
35. Unlike the elevated cases, the locus of the eigenvalues appear to have
two branches: one including the eigenvalue which produces plot C and one not
including this eigenvalue. The field plots shown in Figure 35 illustrate the
field contributions of each of the modes. The modes that appear to be
affected by the presence of the duct are those corresponding to plots A and
C. Thus, in Figure 35, it would be reasonable to assume that plots A and C
correspond to eigenvalues that belong to another branch. Since the former
locus is associated with the ducted fields, it would be expected that the
latter locus is produced by a different propagation mechanism. It will be
demonstrated below for the 170-MHz case that this mechanism is likely to be

simple diffraction.
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The eigenvalue locations for the 170-MHz case are illustrated in
Figure 36. Again, two distinct loci may be identified: one consisting of
eigenvalues corresponding to plots A, B, C, D, E, F, G; and the other
consisting of eigenvalues corresponding to plots H, I and J. The fields of
plots A, B, C, D, E, F and G are seen to be affected by the duct. However,

the fields in plots H, I, and J, seem unaffected.

It is interesting to note from Figures 35 and 36 that the loci of the
modes affected by the duct have a positive slope, while the loci of the modes
not affected by the duct have a negative slope. Tb ascertain the likely
source of the fields that are not affected by the duct, the "ductless"
refractivity profile shown in Figure 37 will be considered. The eigenvalues
produced by this profile for £ = 170 MHz are shown in Figure 38. The form of
the field contribution for each of these eigenvalues is the same, a typical
one being illustrated by a single field plot in the figure. The form of this
field is seen to resemble that of those field plots in Figures 35 and 36 which
do not appear affected by the presence of the duct. The slope of the locus of
eigenvalues in Figure 38 is seen to be negative, resembling the loci of the
eigenvalues that are not affected by the duct in Figures 35 and 36. But when
the refractivity profile does not exhibit a duct, the fields at beyond-horizon
distances are caused by diffraction (since troposcatter has been ignored in
this formulation). The eigenvalues in Figures 35 and 36 that appear to be
transparent to the duct are, therefore, most likely associated with

diffraction fields.

Resuming the investigation of the eigenvalue locations for surface duct
environments, Figure 39 illustrates such locations for a propagation frequency
of 520 MHz and the duct profile shown in Figure 34. One eigenvalue
(corresponding to plot D) is now observed which does not lie on the locus of
the other eigenvalues. The eigenvalues corresponding to plots B and C, which
do not lie near the real 940 axis, are seen to be highly leaky to the region
above the duct. The field in plot D, which corresponds to an eigenvalue that
does not lie on the locus of the other modes, has the appearance of the
diffracted field shown in Figure 37 except for an oscillation in the curve

near the ground.
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ESD-TR-81-102 Section 6

The eigenvalues calculated for a frequency of 3300 MHz are illustrated in
Figure 40. The field contributions of the first three trapped modes are shown

in plots A(1), A(z) and A(3).

The contribution of a mode located off the real
axis is illustrated in plot B. It is seen that this mode still contributes
significantly to the field within the duct, and leaks slightly above the duct

and for only a short distance.

Just as in the case of elevated ducts (TABLE 1), the prediction method
(Equation 205) for approximating the bounds of Re(q10) for the trapped modes
in the qTo—plane should apply for surface ducts as well. The predictions
using this Aapproximation are compared in TABLE 2 with the actual results
calculated by the method of Sections 2 and 3 (and illustrated in Figures 35,
36, 39 and 40).

Notice that TABLE 2 shows no trapped modes for the 65-MHz case, whereas
Figure 35 indicates the presence of a strong ducted field. There is no
contradiction, however, since the trapped modes as defined for the purposes of
TABLE 2 are non-leaky and are essentially unattenuated along the waveguide.
The field contribution evident in Figure 35 is leaky and is attenuated along
the waveguide. It is, however, appreciable at the distance for which the

calculations were made for Figure 35.

Finally, note that no extreme change occurs in the locus of the
eigenvalues in Figures 36, 39, and 40 in the vicinity of Re (q1o) = 0, as was
the case for elevated ducts. For elevated ducts, it was shown that such a
change occurs between modes that produce fields affected by the ground, and
modes that produce fields unaffected by the ground. However, for surface
ducts, the ground plays a role in the duct itself and, therefore, affects the

trapped waves. This is demonstrated by the fact that the trapped modes lie on

either side of Qg = 0.
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ESD-TR~81-102 Section 6

INFLUENCE OF DUCT HEIGHT

To illustrate the effects of the duct height on the locations of the
roots of the modal equation in q4g-space, consider the refractivity profile
shown in Figure 41. This profile (in M-units) is identical to that of Figure
24 except the center of the duct in Figure 41 is at about half the height of
the one shown in Figure 24. The eigenvalues in q,p-space for a frequency of
449 MHz using the profile of Figure 41 are illustrated in Figure 42. The
corresponding eigenvalues using the profile of Fiqure 24 are illustrated in

Figure 26.

Comparing Figures 26 and 42, notice that the number of trapped modes
{ those near the real axis) is the same. These trapped modes appear at lower
negative values of Re(q10) in Figure 42 than in Fiqure 26 since, from Bgjuation
205, the wvalues of Q40 at which a4, and a5, vanish have smaller negative
values in the profile in which the duct height is lower. Although the number
of trapped modes is the same, the number of all other modes (or the density of
the other modes in q10-space) is significantly smaller for the lower duct
height than for the higher duct height. In addition, there are fewer and less
intense fluctuations in the eigenvalue locus of Figure 42 than in the one in
Figure 26. It is reasonable to assume that, when the duct height decreases to
a point where the elevated duct becomes a surface duct, these fluctuations

would disappear entirely, as was seen to be the case in, say, Figure 40.
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ESD-TR-81-102 Section 6

INFLUENCE OF DUCT THICKNESS AND INTENSITY

The propagation frequency of 449 MHz will be utilized to investigate the
effect on the ci1envalue locus of a variation of dQuct thickness and intensity.
Figures 43 through 48 provide illustrations of:

(1) eigenvalue locations and

(2) modal contributions
for ducts of decreasing thickness and intensity. In each case, the modified
refractivity gradients in each region are the same as those in the profile of
Figure 24. The boundary between region 2 and region 3, however, is lowered

until, in Figure 48, region 2 disappears entirely.

As would be expected, Figures 43 and 48 show that the number of trapped
modes decreases as the duct becomes less intense and narrower. The
fluctuation in the eigenvalue locus also becomes subdued and disappears
entirely when the duct disappears. The highest order modes become
increasingly leaky as the duct strength diminishes. The fluctuation in the
modal contributions to the field also becomes small, so that, in plot (B) of
Figure 48, the inflection in the curve (see arrow in fiqure), which identifies
the contribution as originating from the second order mode, is hardly
distinguishable. 1In Figure 48, the lowest order mode from which plot (A) was
constructed was the mode for which Re(q1o) is minimum -- this even though it
does not have the lowest attenuation per kilometer (since it does not have the
lowest value of Im(q10)). The contribution of the mode with lowest

attentuation per kilometer is shown in plot (C) of the figure.
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Figure 47. Eigenvalues and two of their field contributions for a
refractivity profile with the same refractivity gradients
and duct height as the profile of Figure 24, Put with duct
thickness = 0.05 km.
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SECTION 7
ANALYSIS OF DUCTED FIELDS

FIELD SIMULATION BY PARTIAL MODE SUM

In the previous section, it was shown that specific types of propagation
may be associated with different eigenvalues. Thus some eigenvalues will
contribute only to trapped waves within the duct, some will contribute to
leaky (or chordal) waves and some will be associated with multi-hop
contributions caused by reflections from the ground. It was also shown that
the locations of the eigenvalues in q,o-space that provide each type of

contribution can generally be identified.

From Equations 67a and 68, the relative field may be written as:
-Jp x
n

A = 8 | A u (z)u (z)e I (206)
o n n n R n T

where Zp and zp are the receiver and transmitter heights, respectively, and
the sum is over the eigenvalues. It will be noticed from Equation 206 that
for each mode, there is reciprocity between the transmitter and receiver --
that is, the result remains unchanged if the transmitter and receiver heights
are interchanged. Also, un(zR) characterizes the influence of the receiver
height to the modal field contribution, and un(zT) characterizes the influence
of the transmitter height to the modal contribution. This implies that, if
both zp and z2q are heights at which the same type of wave is dominant (e.g.
trapped wave, chordal wave, multip-hop wave), then the dominant terms in the
sum of BEquation 206 will be those of the eigenvalues that contribute most to
that type of wave. Thus, if both Zq and zy are heights within the duct, the
terms in Equation 206 representing the eigenvalues in region A (see Section 6)

would contribute most significantly to the overall sum. Similarly, if Zp and
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z, are both near the ground, the dominant contributions in Equation 206 will

R
be derived from the eigenvalues in region D.

If Zp is a height at which a particular type of wave is dominant, and Zg
is a height at which a different type of wave is dominant, then the
significant terms in the sum in Equation 206 would be those for the

eigenvalues characterizing each of these types of waves.

The above considerations imply that, for certain specific propagation
circuits of interest, it is possible to describe the relative fields by a
relatively small number of eigenvalues. Since it is often possible to
localize the region of the qjo-plane in which these eigenvalues lie (using the
methods described in the previous sections), a significant saving in

computation time may be realized.

Illustrating the point made above, consider the propagation in the duct
in Figure 24. At 2201.7 MHz, the resulting eigenvalues were illustrated in
Figure 27, A portion of these eigenvalues is shown in Figure 49, The
location of the eigénvalues is independent of the transmitter and receiver
heights. Assume the receiver and transmitter are both located within the
duct. Then the dominant contribution to the field will derive from the
eigenvalues close to the real axis in Figure 49. Figure 50 compares the field
using all modes for which Re(q1o) < =77 with the total field using all the
modes shown in Figure 27, It is seen that within the region of interest
(i.e., within the duct), there is good agreement between the two cases.
However, outside the duct, a large discrepancy between the two results is
apparent, since eigenvalues that contribute to the regions outside the duct
were not included in the partial mode sum. Figure 51 compares the field using
all modes for which Re(q1o) < =75 (i.e., more modes than were used in Figure
50) with the total field using all modes. The agreement within the duct is
even better than in the former case, and the field above the duct using the
partial sum is closer to the total field than is the partial sum result in

Figure 50.
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DIFFERENCES BETWEEN MODE AND POWER SUMS - EFFECT OF PROFILE NORMALIZATION

In Section S5 it was seen that, in some cases, the "power sum” result
(Equation 67d in Section 2) differed greatly from the "mode sum" result
(Equation 67c¢). This difference was most obvious in Figures 22 and 23 in the
region above the duct, and was apparently caused by extreme destructive
interference between individual modal contributions that are significant at
those heights. From the measured data shown in these figures, it appears that
the power sum result is more realistic than the mode sum result. Since the
mode sum is theoretically more accurate than the ‘power sum, the question
arises as to the reason for the discrepancy between the measurements and the

mode sum results.

Skillman and Woods (Reference 9) suggested that the source of the problem
might be a perturbation caused by horizontal refractivity inhomogeneities, or
by inadequacy of the mathematical model. The fact that the problem seems to
occur only at high altitudes might point more to the latter explanation.
Pekeris (Reference 4) showed that the "earth-flattening" approximation used in
this mathematical model {(in which the curvature of the earth was taken into
account by modifying the refractivity profile) would become less accurate as
the altitude increases. This inaccuracy would affect both modal amplitudes
and modal phases. Since phases would generally have a more dramatic influence
on the calculated field than small differences in amplitudes, the solution
that strictly accounts for these phases would be expected to go awry prior to
the solution that assumes phase incoherency. This would explain the reason
for the power sum solution providing predictions in Figures 21 and 22 that are

superior to the mode sum predictions.

To illustrate the effect on the relative field strength of small
differences in modal phases, it is interesting to compare the relative field
strength results for the case of a "normalized" refractivity profile (see

Section 3), with the case of an unnormalized refractivity profile. As
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discussed in Section 3, the principal computational difference between these
two cases appears in the value of Pp in the exponent in Bgjuation 206. From

Equation 94, for the unnormalized profile:

(n)
= k 1 H, tan ho (207)
°n T %% 1 % K, 2/3

tan a1

while for the normalized profile,

q (n)
s 10
p. = X 1 - ko 373 (208)

tan C!.1

Since Itan a1| << 1, the difference between P, as defined by Bguation 207 and
p, as defined by Bguation 208 is very small. Figure 52 provides results using
the normalized refractivity profile of Figure 24 and using a corresponding
unnormalized profile for a frequency of 449 MHz. 1In the unnormalized
refractivity profile, the modified refractivity at the ground is taken as 300
(instead of zero). The power-sum results for both the normalized and
unnormalized profiles are identical. However, these profiles produce
different results using the mode sum. Note also that the results differ only

in the region above the duct, but are the same within and below the duct.
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EFFECT OF TRANSMITTER HEIGHT - SINGLE DUCT

Elevated Duct

To investigate the effect of the transmitter height on the relative field
strength, the elevated duct profile of Figure 24 will be used for a frequency
of 2201.7 MHz., The mode-sum and power-sum results are presented in Figure 53
in order of decreasing transmitter height (indicated by an asterisk in the
left portion of each plot.) In Figures 53a and 53b, the transmitter is
located above the duct. The transmitter is within the duct in Figures S5S3c,

53d, 53e, and 53f. 1In Figures 53g and 53h, the transmitter is below the duct.

When the transmitter is above or in the duct, the fields in or above the
duct are relatively large. The optimum coupiinq of energy into the duct
occurs when the transmitter is near the duct center, When the transmitter is
above or in the duct, the fields are greatest within the duct. When the
transmitter is below the duct, field enhancement due to the presence of the

duct is negligible or absent entirely.

By reciprocity, the results cited above would hold if the receiver and
transmitter were interchanged. It may therefore be concluded that, under
suitable duct environments (i.e., environments in which the minimum trapping
frequency of the duct is less than the transmission frequency), the duct
serves to significantly enhance the fields when both the transmitter and
receiver are in or above the duct. If either terminal of the propagation
circuit is below the duct, the resulting fields would not be significantly

enhanced by the presence of the duct.

Surface Duct

The fields in a surface duct will now be considered for different

transmitter heights. The duct profile of Figure 34 will be used for
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a frequency of 3300 MHz, Figure 54a shows the fields calculated using the
mode-sum series for three transmitter heights: one outside the duct and two
within the duct. Figure 54b shows the corresponding fields using the power
sum solution. Notice that, contrary to the case of elevated ducts, the field
1s weaker in the duct than above it when the transmitter is above the duct.
This would be due to the fact that, when the source and observer are both
above the duct and separated by a distance of 111.2 km, they are within line

of sight of each other.
In Figures 54a and 54b, the transmission is taken as being vertically

polarized. The results for this case were found to be identical to those

using horizontal polarization.
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Figure 54a. Mode sum fields calculated using the refractivity profile of
Figure 34 for different transmitter heights.
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EFFECT OF TRANSMITTER HEIGHT - DOUBLE DUCT

The effect of transmitter height on relative field strength will now be
investigated for the two-~duct refractivity profile illustrated in Figure 32
for a frequency of 449 MHz. The mode-sum and power-sum results are presented
in Figures 55a through 554 in order of decreasing transmitter height. In
Figure 55a, the transmitter is above the upper duct; in Figure 55b, the
transmitter is within the upper duct; in Figure 55c, the transmitter is
between the upper and lower ducts; and in Figure 554, the transmitter 1is
within the lower duct. The effect of each duct (or lack of effect) is obvious
in each figure. It is clear that the field is greatest within each duct when
the transmitter is located within it. From Figures 55¢ and 55d, it is seen
that, when the transmitter is below the upper duct, the field in the upper !
duct is similar to the field that would be expected if the upper duct were not !

present. The lower duct, however, serves to enhance the field in these cases.

The conclusions drawn for the single duct environment may be generalized
to the two-duct environment: Each duct will significantly enhance the fields
when both the transmitter and receiver are in or above it. If either terminal
of the propagation circuit is below one duct (or both ducts), then the

resulting field will not be enhanced by the presence of that (those) ducts.
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EFFECT OF DUCT THICKNESS AND INTENSITY

The propagation frequency of 449 MHz will now be utilized to investigate
the effect on the calculated fields of a variation of duct thickness and
intensity. 1In each case considered, the modified refractivity gradient in
each region is the same as that in the profile of Figure 24. The variation in
duct thickness and intensity 1s obtained by lowering the boundary between
region 2 and region 3 until region 2 disappears entirely. This is
accomplished for three different transmitter heights in Figures 56, 57 and 58,
respectively. In Figure 56, the transmitter is located above the duct, in
Figure 57 the transmitter is located within the duct, and in Figure 58, the
transmitter is located below the duct. 1In each figure, relative field

calculations are presented for different duct thicknesses (and intensities).

In Figures 56 and 57 (in which the transmitter is above the duct and
within the duct, respectively) it is observed that, for the first two or three
duct thicknesses considered, the maximum field within the duct remains about
the same. The fields in the duct fall off rapidly for .asaller ducts. In
Figure 58, the fields are very similar for all finite duct thicknesses, but

are appreciably smaller in the limit of an absence of the duct.

The discrepancy in the figures between the mode-sum and the power-sum

results for the smaller duct sizes was not investigated.
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Figure 24, for different duct thicknesses (transmitter

above the duct).
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EFFECT OF FREQUENCY

The effect of frequency variation on the calculated field will now be
investigated for the elevated duct profile of Figure 24, Measurements
documented by Skillman and Woods (Reference 9) for a duct environment similar
to this indicated that the relative field variation with height was similar
for frequencies 449.2 and 2201.7 MHz. Their results were illustrated in
Section 5, They succeeded in predicting the results for frequencies of 149.3
and 449.2 MHz using a computer program developed by Pappert and Goodhart

(Reference 5).

In Figure 59, calculated results are presented for frequencies 149, 449,
2201,7 and 10000 MHz. The results for the 449 and 2201.7 MHz cases were
compared in Section 5 with measurements documented by Skillman and Woods
(Reference 9)., 1t is seen here that not only are the 449 and 2201.7 MHz
results similar to each other, but they are both similar to the results for

10000 MHz, This bears out the suggestion of Skillman and Woods that, in duct

environments, it might be possible to utilize calculations at lower

frequencies to determine relative fields at higher frequencies.
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SECTION 8
CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS

1. A reliable computer model, based on a waveguide mode
formulation, has been developed for calculating beyond-line-of-sight
electromagnetic fields in a horizontally stratified tropospheric duct
environment.

2. The model is capable of evaluating fields for higher elevated
ducts and higher frequencies (i.e., through SHF) than were previously feasible
in other available models, which had numerical difficulties that precluded

computation of all significant eigenmodes of the system.

3. The types of numerical difficulties encountered in other models

were eliminated by the use of a unique mathematical formulation that

a. Assures linear independence (Equations 104 to 106), even in
a "numerical sense", of the homogeneous form of the governing differential
equation; and

b. Provides flexibility for judiciously choosing the

particular sclution (Equation 189) to the inhomogeneous form of the governing

differential equation.

4. The model methodically and efficiently determines all
significant eigenvalues (Section 3) and corresponding fields (Section 4) for

elevated and surface ducts at all frequencies through SHF,

Se Criteria have been developed (EBEquation 20%) for associating
specific types of field contributions with eigenvalues in a specific portion

of the eigenvalue locus. These criteria have the potential for increasing the

computational efficiency of the model in certain circumstances.

ANA
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6. The model has beea verified by comparing its predictions with
measurements in both elevated and surface duct environments (Section 5). It
is the only known computer model that provides predictions which agree within
a few dB with field strength measurements performed in an elevated duct

environment at frequencies as high as 2207 MHz (Figure 23).

7. The model is deemed to be a valid tool for predicting and

s*udying electromagnetic fields in a tropospheric duct environment.

RECOMMENDATIONS

1. Measured data on the probability of occurrence of ducts of

various characteristics in various geographical locations should be analyzed

and used in the deterministic model in a manner that would provide statistical

loss values. The results should specify the probability of loss as a function !
of geographical locations and seasons. These statistical loss values should

be used to revise the long-term power fading subroutine used in ECAC

propagation models.

2. The model should be extended to predict loss values at distances

within line-of-sight.

3. The model should be extended to account for the effect of

obstructions in front of the antenna.

4. The model should be extended to allow a nonhomogeneous

horizontal refractivity.
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APPENDIX A

ASYMPTOTIC BEHAVIOR OF h,(g) AND h,(q) AND F(q) IN THE UPPER
HALF OF THE q-PLANE

Values of the real and imaginary parts of h, in the complex g-plane are
shown in Figures A-1 and A-2, respectively. The corresponding values for h2
are given in Figures A-3 and BA-4. When |q| is small, h, and h, are both of

order unity, as must be F(q), defined from Equation 98 as:

h, (q) - e h, (q) (A-1)

"

Flq)

}h1|, |h2I and |F| only become exponentially large or small when [qi is
large. These functions may therefore be studied using their asymptotic
expansions. These asymptotic expansions will be defined according to

Reference 14, It iIs convenient to define the following:

1
B Z- -513/12 m -3m/2
u(g) = Aq e [" +I (-3 C q ] (A-2)
m=1 m
1
- — 57j/12 m ~3m/2
vigq) = A 4 e (1 + 21 (3) € q ] (a-3)
= m
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Figure A-1. Contours in the g-plane for Re(h1) = constant (from
Reference 14).
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Im (q)
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Q.00 o000 o / R(h)=0

Re(q)

Figure A-2., Contours in the g-plane for Im(h1) = constant (from
Reference 14).
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Contours in the g-plane for Re(hz) =

176
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f(q)

g(q)

where

and

Appendix A
. 3/2
e2/3 )q (A-4)
. 3/2
= §‘Jq /
= e (A-5)
LI E
23 e6 m 2 = 0.853667218838951

(9-4) (81-4) + . . [9(2 m-1)2 = 4]

24" 3™ oy
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Then:

h1 (q) ~ f£(q) u(g), O < arg(q) <« (A-6)

and

0 , 0 < arg(q) < mw/2 (A-7a)

hz(q) ~ g(q) v(q) +

e4ﬂj/3 w

) < arg(q) < 7

f(q) u(q),
(A-7b)

The reason that different asymptotic expansions are needed in different
regions of the complex plane (as in Byuation A-7) is the fact that, although
hl(q) and hz(q) are analytic for all finite values of g, these functions have
branch cuts at infinity. Since the asymptotic expansion is essentially an
expansion about a point at "infinity", the branch behavior becomes apparent in
the asymptotic expansion. As discussed in Reference 14, Bjuation A-7a is
valid in the region shown in Figure A-5a, while Equation A-7b is valid in the
region shown in Figure A-Sb. To avoid approaching the branch cut, it is

convenient to use the region division used in Equation A-7.

From Bguations A-1, A-6 and A-7:

Ls (A-8a)

e/ £q) w@), o <argla) <3

F(q) ~ g(q) v(q) -
0 , “3< arg(q) < m (A-8b)
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Im(g) Im(qg)

\‘\/’\
\

\\ _2r
W R

1

(a) (b) H

Region of validity of Region of validity of
Equation A-7a Equation A-7b

Figure A-5, Regions of validity of asymptotic expansions for h2.

The exponential behavior of h1, h2 and F will enter through the variables
f and g as defined by Equations A-4 and A-5. Letting:

q = pe (A-9)
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where p and O are real, would produce:

q3/2 = 93/2 (cos-é 6 + 3 sin 2-6)
2 2
so that
f = «a eJB, g =Y e:’(S
where
Z 93/2 sin é-6
3 2
a = e ' B
2 3/2 . 3
3 p sin 2 8 ) £
Y = e

Appendix A
(A-10)
(A-11)
2 3/2 3
- =6
3 ) cos >
2 3/2 cos é-e (A-12)
3° 2

and a, B, Y and § are real numbers. Since the modulus of ejB and ejcS is

unity, the magnitude of f and g may be obtained from a and Y, respectively.

For a particular value of p = lql, a and Y are determined by

@ = arg (q). Whether a and Y are large or small would depend on the sign of

the exponents in equation A-12, which in turn depends on the sign of

sin-% Q. It is clear, though, that when a is exponentially large, Y is

exponentially small, and vice versa. Now:

181
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3 1, 0 <6 < 2n/3
sign (sin 3-6) = (A-13)

-1, 21/3 <8 <7

where only the values of C < 8 < 7 are considered since only the upper half of

the g-plane is of interest. Therefore, for p large:

a << 1, Yy >> 1, o<e<2—§
(A-14)
a > 1, Y << 1, 2—’3'<e<n
or
[E] << 1, lg] >> 1, 0 <8 < 3%
(A-15)
L€l >> 1, lagl << 1, 3% <B <
Therefore, from Equations A-6, A-7 and A-8,
2n
|h1(q)| < 1, 0 <arg (q) < =5
(a-16)
|h1(q)| > 1, 2—13' < arg (q) <
Ihz(q)l > 1, 0 < arg (q) < (a=17)
182
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2

|F(q)| > 1, 0 < arg (q) < —1;
(A-18)

[F(a)| << 1, 2 arg (q) < 7

3

where, in Bquations A-7b and A-8a, the fact was used that the sum of an
exponentially large term and an exponentially small term is expontentially
large. The inequalities in the above equations should be interpreted in terms
of the "potential” for being much less than or greater than 1, since it is
clear that as the boundary O = arg(q) * 27/3, the inequality would not

necessarily hold.

From Byuations A-16, A-17 and A-18, it is seen that |h1(q)| and |h2(q)|
may both be exponentially large simultaneously in a portion of the upper half
plane, whereas h1(q) and F(q) cannot be large simultaneously in this region.
This fact prnmpts the use of the functions K1(q) = h1(q) and Kz(q) = F(q) in

the solution to the Stokes equation.
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APPENDIX B
EVALUATION OF THE MODAL DETERMINANT

GENERAL

In searching for the roots of the modal determinant, this determinant
must be evaluated many times. An efficient method for accomplishing this is,
therefore, required. Standard elimination methods require many summing
operations which should be avoided as much as possible if there are large
differences in magnitude among the elements of the determinant. The
evaluation method should also take maximum advantage of the presence of zero h
elements in the determinant. A method is described below to accomplish
this. This will be done first for a simple 5-by-5 matrix. It will then be

generalized to the N-by-N case.

5-by-5 MATRIX

When there are three atmospheric layers (L = 3), the modal determinant is

given by BEquation 136 which is written here as:

a11 a12 0 0 0

321 322 %23 224 0

[a] =] 231 32 %33 234 0
243 %44 345
0 0 253 A5y 355

It is desired to evaluate this determinant.
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The determinant in Equation B-1 can be written as a linear sum of
cofactors:

la] = a, Ma, ) -a, . Ma__) (B-2)

13 = a14 = a15 = 0 was used, and the determinants of the

] d M a:
minors M(a11) an (alz) ar

where the fact that a

222 a3 34 0
a32 233 314 0
M(a,)) =10 343 224 s
0 353 32y g
0 322 223 224
0 a3 333 234
- B-3
345 0 343 244 (B-3)
55 ° 353 854
and
186
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2y 33 3,8 O 31 0 a2 224
a3 333 334 © a3 0 233 234
Mla,,) = 0 243 a4 %51 = |0 345 343 344
0 353 54 35 0 3s5 53 a5
(B-4b)

The final determinants in Equation B-4 were obtained by permuting the

columns of the respective matrices.

Consider a system of four equations in four unknowns:

Bu = C (B-5)

where B is the known, non-singular matrix formed from A as the minor of the

a15 term:
2 222 423 34
a3 432 333 334
- (B-6)
B = M(a1s) = 0 0 a43 a44
0 0 353 354

u is the unknown vector
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and C is the known free vector formed by the negative of the last column of A

excluding the first element:

c = -a (B-8) i

Using Bguations B-6 to B-8, the solution of u, is given by:

1

° %22 255 %24
0 232 233 %34
345 0 %43 a4 (B-9)
. . agg ) agq ag, _ + M (all)(
1 - ™ (a )]
1
Y %32 %23 224 3
ey a3 333 334
0 0 a43 a44
[¢] 0 a53 a54
and U, is given by:
291 0 223 %24
a3 0 233 234
0 s 243 %44 (B-10)
oL e 3ss %53 3sg | Myl
2 M (a15)T - ™ (a15)l
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From Equations B-9 and B-10:

lM(a”)] = 'M(a15)'u1

and

IM(a12)| = - [Ma )| u

15 2

so that Equation B-2 may be written:

Y| (a,u, +a,  u)

Al = [mG 111 1272

15

corner., That is:

2 22 43
)| o= .
31 32 53

|M(a15

Appendix B

(B-11)

(B=12)

(B=13)

From Bquation B-6, it is seen that the determinant of M(a15) is simply
the product of the determinant of the 2-by-2 submatrix in the upper left

corner and the determinant of the 2-by-2 submatrix in the lower right

44
(B-14)
54

Substituting Bguations B-6, B-7, and B-8 in Bjuation B-5 yields the

system of equations:
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aj U, +a,, U, aug+a, u, = 0 (B-15a)
a31 u, + aq, u2 + a33 u, + a34 u, = 0 (B-15b)

aguyta, u = -a (B-15c¢)
ag, Uy + a5, U, = -agg (B-15d)

It is clear from Equations B-15 that the values of uq and u, may be obtained

4

by solving Bjuations B-15c and B-15d alone:

where 1t

45 44
“455 854
= A ; (B-16)
43 44
53 %54
%43 “%4s
%53 “4s5
= j 5 (B=17)
43 44
353 54

is assumed that the denominations have non-zero values.
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Equations B-16 and B-17 may now be substituted into Equations B-15a and B-15b

to obtain:

W
a U + a u =
1
2 1 22 2 a43
353
a u, o+ a u =
1
3 1 32 72 a43
53
where
845 244
w1 = a23 a a
55 54
and
v - a 245 244
2 33 a55 aS4

Equations B-~18 and B-19 may be easily solved to yvield:

44

54

+ a 343
24 a53

+ a 343
34 a53

191
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55

45
55

(B-18)

{B-19)

(B-20)

(B-21)

(B-22)
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where Equation B-14 was used.

Substituting Bjuations B-22 and B-23 in Bjuation B-13 results in:

la] = a,, w a + a,, |a w (B-24)

where W, and W, are given by Hjuations B-20 and B-21, respectively.

N-by-N MATRIX

The method utilized above for a 5-by-5 matrix will now be generalized.

Consider the N-by-N matrix given by:

1 12 N
321 322 . . . . . . . . . . . . . azN
A = : . . (B-25)
aN1 aNZ . . . . . . . . . . . . . aNN
4
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From the definition of the determinant of a matrix in terms of a cofactor

expansion:

N i+1
la] = I (-1 a M (a | (B-26)
1=1 11 11

Define the following permutation operation on the columns of a square
. L . . .
L-by-L matrix E: Let Pa(E) be the matrix formed by the operation of moving
columns o, a+?, a+2, . . « ,L=1, L so that column L becomes column a, column

o becomes column a+1, column a+!1 becomes column a+2, etc. Now:

L L-a
IPa (E)] = (~1) | E] (B-27)
In particular, let
E = Ma,.) (B-28)
11

so that L = N - 1, and let « = 1. Thus:

] = (-1 piN'1 (E) | (B-29)
Then

N-1 1+1 N-1-1 N-1 N+1
lal = £ (-1 a (-1) Ip Ma | +(=1) a |Mma )]

i= 11 1 11 N N

(B-30)
N N-1 N-1 N+1
= (1) I a P (Ma M| + (-1 a [Mma |
i=1 11 1 11 1N 1N
193
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Now consider

o = O

the system ot N-)

equations

Appendix B

and N-1 unknowns:

(R-1311)

where R 1a the known matrix tormed from A as the minor of a,,:

e s s a0 e

N1

o1 the unknown vector

—-

Z cesvene:

and ¢ is the known

excluding the firs

s s oo e,

]

tree vector tormed by the negative of the last column of A

t element:

-
LS

-
Z cesenes i,

]

1o

N

.
.
.
.
.
.
.
.
¢
2
H
-

[

e s eacen o,

r4
D

(R-33)

(B-14)
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It is known that, if the matrix B is non-singular, the solution for u, is

obtained as:

u, = -—, 1 <1< N1 (B=-35)
so that
IB(J.)I

= v [Bl, 1<i <Nt (B-36)

where B{1) is the matrix obtained by replacing the ith column of B with the

free vector C. But some thought would show that:
I8 = - lP.N—1 M (a, M1, 1< i < N=1 (B=37)
i 1i - ~
Using Equations B-32 and B-37 in Equation B-36 leads to:
N-1

= - , i -1 -
IPi (M(a1i))| ay IM(a1N)| 1<i<N (B-38)

Substituting Equation B-38 into Equation B-30 yields:

N N-1 N+1
Al = (=1) {- ] a u IMa )} + (-1) a IM(a )]
i=1 14 i N N N
N+1 N-1
= (-1) IMa ) {a + J a wul}
N N i=1 1 i
195
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or
N+1 N
[a]l = (=1 iMa Y ¥ a w, a = 1 (B-39)
1N i=1 11 i N
APPLICATION

At first glance, BEquation B-39 looks more involved than its eguivalents
in Equations B-26 and B-30. Indeed, the form of Egquation B-39 contains the
unknowns in the vector u, which first must be solved through Bjuation B-31
before a solution for |A] is obtained. Nevertheless, there exist matrices for
which Byuation B-39 represents a more efficient method for evaluating |a} than
does Equation B-26. Such a matrix would be one for which B = M(alN) would

be relatively simple to evaluate even though |A} is not.

Consider, for example, the N-by-N matrix A for which the submatrix B =
M(aTN) has the form illustrated in Figure B-1. About the diagonal
of M(aiN) are 2~by-2 and 3-by-3 submatrices which are each (except for those
on the array boundary) flanked below and to the left by zero elements. There
are, say, K such submatrices. The kth such matrix Mk will have Nk-by--Nk

elements, so that:

K
I N = N-1 (B~40)

D, = lel (B~41)
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The rectangular matrix consisting of the elements of B to the right of M will
be called the matrix Fk,k = 1,2 seee, K-1. The elements of each Fk may be

Zero Or non-zero. Fk will have Nk rows and ﬁ% columns, where:

- K
N = z N ) (B-42)
k i=k+1 i

(k) of the unknown vector u as that portion of

e

Now define the subvectors u
u corresponding to the matrix F, (see Figure B-1). will contain Ny
terms. Its first term will be the nI(k) element of u, and its last term will

be element number nF(k) of u, where

k-1
(k) ¢ N ’ k > 1
n = 1 + i=1 i (B-43)
I
0 ’ k =1
and
(k) k
n = z N (B-44)
F i=1 1

Similarly, define the subvectors C(k) of the free vector C.

. — (k

Also define complementary subvectors u (k) of the unknown vector u.
— (k)
u

U(k).

is the vector consisting of all terms in u beyond those which make up

(k) - (k)

Thus the first term in u will be the term number nI of u and

the last term will be term number N-1 of u, where:
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= (k) (k)

n. = ng + 1
It is now clear that:

K
IB] = |M(a ) = 1 b
1N k=1 k

K)

Now the subvector u( may be solved using the equation:

M LKL LR
so that
L
w (K X
t K
(1)

where, again, M

with the vector C(K).

The subvector u'f™") may be solved from the equation:
(K-1) (K~-1) —(K-1)
MK-1 u C FK-1 u
: ¢ (k-1
so that
199

is the matrix obtained by replacing the ith column of M
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(B-45)

(B-46)

(B-47)

(B-48)

K

(B-49)
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(1)
L l
g K-V KV (B-50)
i D
K-1

where MK 1(i) is the matrix obtained by replacing the ith column of MK—1 by

the vector E(K-1) . The kth subvector u(k) may now be solved for through the

equation:

Mk u(k) = C(k) _ Fk 3 (k)E ‘E (k) (3—51)
so that
(1)
| |
u (K —L (B-52)
1 D

k

This procedure may be continued until a solution is obtained for the subvector
wll, The values of u; so calculated may be used aleng with Bquation B-46 in

Hjuation B-39 to obtain the determinant of A.

SINGULAR SUBMATRIX

The effect of one of the submatrices (say Mj) being singular is now
considered. In solving this, an investigation is made into the manner in
which Dj enters the final expression for A when Dj is small.

It is clear that D. would not enter the successive calculations described

in Byuations B-51 and B-52 until the value of u(j) is to be evaluated. Then:
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where the vector V(j) is defined:

(T)I

(M
(5) )
v -
lM (2)|
b]
|M (3)|
j L]
(Nj)
M,
g 0|
The equation for u{3-1) is then:
w, w3 o D g

j-1 j-1

3 (3-1)

Appendix B

(B-54)

(B-55)
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Substituting this into Equation B-55 yields:

M, wTt o Lop, BV Lp 5 O (B-57)
-1 Dj j j-1

As Dj becomes small, the first term in the brackets of Bjuation B-57 will
. . . — (31 A
vanish, as will all elements in the product Fj v (3-1) containing the factor

Dj' But this is the result that would be obtained if:

C(J-1) = U(j+1) = U(J+2) = R = U(K) = 0
. .
RO (B-58)
-
J

Each term in the free vector in Bjuation B-57 will therefore be inversely

proportional to Dj' In solving Equation B-57, each element of the vector
j =1 . . . . . .
1.1(J ) will likewise be inversely proportional to Dj‘ The same reasoning may

be used for u(j—Z), u(]-3), cesey u(1) to show that each of these subvectors

will be inversely proportional to D.,, and that the result obtained requires

(k) (x)

ignoring the subvectors and u + J+1 < k < K, in comparison to the other

terms of the free vector. Using Equations B-58 and B-46 in Bguation B-39

yields:
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where
7
//
LM
/@
u, = : \ {B-60)
t 13-1)
u J
\ V(J) /

O e O
\
3

in which the factor Dj in the numerator and the denominator have been
cancelled, and Dj does not appear in Equation B-59. The unknown

i . . . . )
u( ), 1 <1 < j-1 are assumed to be obtained using the successive method

described by Bguations 27 and 28, using:

(B-61)
u(k) = 0, j+1 <k <K

and with u(j) replaced by v(j). Huation B-59 is the final value for the

determinant when the jth submatrix Mj is singular.

In the event that both Mj and M, o are singular, where o is a positive

integer, then the resulting value of |A| would be:

LI b S 1 (B-62)

where

203




ESD-TR-31-102
where
// (1
u
/ (2)
- u
u, = .
i .
/ {§-a-1)
VJ -a
0
0
k . .
and the u( ), 1 <k < j- a -1 are obtained as described above.

Appendix B

(B-63)

The

extension to any number of singular submatrices is straightforward.

PARTICULAR CASE

O0f particular interest will be the matrix A with:

a,
1N

and with
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N
N+1 1
lal = (-1) [M(a )| ) a u (B~67)
N i=1 11 i
From Equation B-65:
ct ooty o 2 Ty (B~68)

and from Equation B-66, the submatrix M(a1N) is as shown in Figure B-2. The

non-zero portion of the F will be called F ~

K and will have Nk rows and
!

oclumns.
Nk+1 ¢ mr

The first step in the solution procedure is determination of the elements

of u(K) from Equations B-47 and B-48 to yield:

= (B-69) %

(K)

is the vector, the ith term of which is the determinant of
C(K).

where again v

the matrix formed by replacing the ith column of MK by the free vector
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M(a,N).

Submatrix

Figure B-2.
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From Equations B-49 and B-68, the elements of u(K'1) are given by:

(K-1) — (K=1) ' (x)
ey @ = Fya v = - Fgy @
R S g ) (B-70)
K-1 Dy D,

This has the solution:

G-

D_D
K K-1

u(K'1) (B-71)

(X-1) §5 the vector, the ith term of which is the determinant of
= (K=1)

the matrix formed by replacing the ith column of MK-I by the vector C

where now v

The elements of u(k) are given by:

(B~72)

with the solution:
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(B-73)

The solution of u(1) will similarly be given by:

(1)
(1) v
u = — (B-74)

K
1 D

i=1 i

Substituting Bjuation B-46 and B-74 into Hymation B-67 yields:
N
[a] = (-1) I a v (B-75)

Thus it is seen that, for this particular form of the matrix A, the

determinants of the submatrices do not enter into the final expression for

|A « It follows that Egquation B-75 also holds when any of the submatrices is

singular.

EXAMPLE - FIELDS IN HOMOGENEOUS STRATIFIED LAYERS

Consider L layers of atmosphere over a ground, with each layer
homogeneous and characterized by a parameter a. In acoustics, this parameter
might be the medium density. 1In electromagnetics, this might be the

permittivity €. A field quantity Ei in the ith layer may be written as:

E (r, z2) = | ¥, (a; k, 2) £ (k,r) dk (B-76)
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where f is a known kernel and the integration is over a closed contour in the
complex k-plane. Assuming the quantity Wi satisfies a linear second-order

differential equation, it may be written as:
¥ k = h +B h 8 -
i (ai, '2) Ai h1(ai,k,z) Bi hz(ai,k,z) + ip g(ai,k,z,zT) (B=77)

where

E} and E; are linearly independent functions,
g is a Green function, which is a particular solution of the governing
differential equation that accounts for a source at the location
z = zT located in the pth layer,

6ip is the Kronecker delta function.
The unknowns Ai and Bi may be found by solving the system of linear equations
representing the boundary conditions on the ?i and Wi‘ = B?i/az at the layer

14

interfaces ( z = zi, 1 <i<L-1) and at the groung, ( z = zo } and the

radiation conditions at z * + ®. For L = 4 This system will have the form:

Ay mlaqg) + By halqso) =
Ay hy(qqq) + By hp(aqq) = Az hy(qzq) = By hy(qzq) -
Ay hylayqe) + By h3(qqq) - Az hilgpq) - By h3(qzq) =
A; hy(gy5) + By hplapp) - A3 hy(qzy) - B3 hp(qzy) =
A, hjlagy) + By hilapp) - A3 hilqzp) - By h3lg3p) =
A3 hy(az3) + B3 hp(qz3) - By hplagy) =
Ay hi(qp3) + B3 h3(q33) - By hjlqey) =
(B-78)
where hm(qji) z F;(ai,k,zj), j=i, i1, i > 0, h (g, ) = E;(q1o) - Gﬁ;(q1o),
where G is a function of k and the ground parameters, and it has been assumed
that p=2. The f; are functions of k. Bquation B-76 may be evaluated using
residue theory, where the poles of Vi are the values of k at which the

determinant of the above system of equations vanishes. When the roots of this
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determinant are evaluated numerically, the determinant must be evaluated many

times, thus making an efficient means for such evaluation very useful.

The matrix has the form:

A, a,, 0 0 0 0 0
221 222 323 %24 0 0 0
A = 31 32 333 %34 0 0 0
0 %43 %44 45 %46 0
0 0 353 %54 355 356 0 (8-79)
0 0 0 0 a65 a66 a67
0 0 0 275 276 377

This matrix has the form of the matrix in Figure B-2, and the evaluation of
its determinant may be accomplished using the algorithm described above. The
total number of multiplication operations required is on the order of 8K where
K is the number of 2nd-order submatrices. In the example above, K= 3, so that
the number of multiplication operations is 24, or about the number of non-zero
terms in the matrix. This compares with N! for the case of expansion of the

determinant in cofactors, which, for the above example, would be over 5000.

In the event the submatrices were of order 3, then the number of
multiplication operations would be on the order of 45K. If K= 2, in a 7-by-7
matrix such as Equation B-79, this number would be 90, which still is small
compared with the 5000 operations required to evaluate the determinant of a

7-by-7 matrix using a cofactor expansion.
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